Changes in cell wall organization resulting from surface growth in parenchyma of oat coleoptiles

1958 ◽  
Vol 6 (2) ◽  
pp. 89 ◽  
Author(s):  
AB Wardrop ◽  
J Cronshaw

The primary walls present during the phase of extension growth in oat coleoptiles possess an almost transverse microfibril orientation on their inner surfaces but on the outer surface the microfibrils are considerably disoriented from this direction, which is consistent with the concept of multi-net mechanism of growth. Coleoptile segments grown at 2°C to depress cell wall formation show no difference in orientation on their inner and outer surfaces; this is also considered to be consistent with the multi-net mechanism. It is shown that the longitudinal ribs of microfibrils present at the cell corners, and hitherto referred to as secondary thickening, are on the outer surface of the cell wall and are considered to arise from a disorientation of microfibrils as a result of multi-net growth. As a result of this microfibril disorientation there is a tendency for the pit fields to be reduced in area. After surface growth has ceased a secondary wall is formed with a well-defined helical organization distinctly different from that of the primary wall. The implications of these results in terms of previous investigations are discussed.

2021 ◽  
Vol 22 (7) ◽  
pp. 3560
Author(s):  
Ruixue Xiao ◽  
Chong Zhang ◽  
Xiaorui Guo ◽  
Hui Li ◽  
Hai Lu

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


1952 ◽  
Vol 5 (4) ◽  
pp. 385 ◽  
Author(s):  
ABW Ardrop ◽  
HE Dadswell

Cell division, the nature of extra-cambial readjustment, and the development of the secondary wall in the tracheids of conifer stems have been investigated in both compression wood and normal wood. It has been shown that the reduction in tracheid length, accompanying the development of compression wood and, in normal wood, increased radial growth after suppression, result from an increase in the number of anticlinal divisions in the cambium. From observations of bifurcated and otherwise distorted cell tips in mature tracheids, of small but distinct terminal canals connecting the lumen to the primary wall in the tips of mature tracheids, and of the presence of only primary wall at the tips of partly differentiated tracheids, and from the failure to observe remnants of the parent primary walls at the ends of differentiating tracheids, it has been concluded that extra-cambial readjustment of developing cells proceeds by tip or intrusive growth. It has been further concluded that the development of the secondary wall is progressive towards the cell tips, on the bases of direct observation of secondary wall formation in developing tracheids and of the increase found in the number of turns of the micellar helix per cell with increasing cell length. The significance of this in relation to the submicroscopic organization of the cell wall has been discussed. Results of X-ray examinations and of measurements of� tracheid length in successive narrow tangential zones from the cambium into the xylem have indicated that secondary wall formation begins before the dimensional changes of differentiation are complete.


1991 ◽  
Vol 82 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Barbro S. M. Ingemarsson ◽  
Leif Eklund ◽  
Lennart Eliasson

2014 ◽  
Vol 48 (4) ◽  
pp. 389-397
Author(s):  
Liu Lin ◽  
Quan Xianqing ◽  
Zhao Xiaomei ◽  
Huang Lihua ◽  
Feng Shangcai ◽  
...  

1955 ◽  
Vol 3 (2) ◽  
pp. 177 ◽  
Author(s):  
AB Wardrop ◽  
HE Dadswell

The cell wall organization, the cell wall texture, and the degree of lignification of tension wood fibres have been investigated in a wide variety of temperate and tropical species. Following earlier work describing the cell wall structure of tension wood fibres, two additional types of cell wall organization have been observed. In one of these, the inner thick "gelatinous" layer which is typical of tension wood fibres exists in addition to the normal three-layered structure of the secondary wall; in the other only the outer layer of the secondary wall and the thick gelatinous layer are present. In all the tension wood examined the micellar orientation in the inner gelatinous layer has been shown to be nearly axial and the cellulose of this layer found to be in a highly crystalline state. A general argument is presented as to the meaning of differences in the degree, of crystallinity of cellulose. The high degree of crystallinity of cellulose in tension wood as compared with normal wood is attributed to a greater degree of lateral order in the crystalline regions of tension wood, whereas the paracrystalline phase is similar in both cases. The degree of lignification in tension wood fibres has been shown to be extremely variable. However, where the degree of tension wood development is marked as revealed by the thickness of the gelatinous layer the lack of lignification is also most marked. Severity of tension wood formation and lack of lignification have also been correlated with the incidence of irreversible collapse in tension wood. Such collapse can occur even when no whole fibres are present, e.g. in thin cross sections. Microscopic examination of collapsed samples of tension wood has led to the conclusion that the appearance of collapse in specimens containing tendon wood can often be attributed in part to excessive shrinkage associated with the development of fissures between cells, although true collapse does also occur. Possible explanations of the irreversible shrinkage and collapse of tension wood fibres are advanced.


2020 ◽  
Vol 50 (2) ◽  
pp. 176-186
Author(s):  
Yi MAN ◽  
RuiLi LI ◽  
YuFen BU ◽  
Na SUN ◽  
YanPing JING ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document