cell wall organization
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sedighe A Keynia ◽  
Thomas C Davis ◽  
Daniel Szymanski ◽  
Joseph A Turner

Plant cell size and shape are tuned to their function and specified primarily by cellulose microfibril (CMF) patterning of the cell wall. Arabidopsis thaliana leaf trichomes are responsible for protecting plants against environmental elements and are unicellular structures that employ a highly anisotropic cellulose wall to extend and taper, generating pointed branches. During elongation, the mechanisms by which shifts in fiber orientation generate cells with predictable sizes and shapes are unknown. Specifically, the axisymmetric growth of trichome branches is often thought result from axisymmetric CMF patterning. Here, we analyzed the direction and degree of twist of branches after desiccation to reveal the presence of an asymmetric cell wall organization with a left-hand bias. CMF organization, quantified using computational modeling, suggests a limited reorientation of microfibrils during growth and maximum branch length limited by the wall axial stiffness. The model provides a mechanism for CMF asymmetry, which occurs after the branch bending stiffness becomes low enough that ambient bending affects the principal stresses. After this stage, the CMF synthesis results in a constant bending stiffness for longer branches. The resulting natural frequency of branches after a length of 200 μm falls within the range of the sounds associated with many insects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antri Georgiou ◽  
Simon Sieber ◽  
Chien-Chi Hsiao ◽  
Tatyana Grayfer ◽  
Jacob L. Gorenflos López ◽  
...  

AbstractAfter a century of investigations, the function of the obligate betaproteobacterial endosymbionts accommodated in leaf nodules of tropical Rubiaceae remained enigmatic. We report that the α-d-glucose analogue (+)-streptol, systemically supplied by mature Ca.Burkholderia kirkii nodules to their Psychotria hosts, exhibits potent and selective root growth inhibiting activity. We provide compelling evidence that (+)-streptol specifically affects meristematic root cells transitioning to anisotropic elongation by disrupting cell wall organization in a mechanism of action that is distinct from canonical cellulose biosynthesis inhibitors. We observed no inhibitory or cytotoxic effects on organisms other than seed plants, further suggesting (+)-streptol as a bona fide allelochemical. We propose that the suppression of growth of plant competitors is a major driver of the formation and maintenance of the Psychotria–Burkholderia association. In addition to potential agricultural applications as a herbicidal agent, (+)-streptol might also prove useful to dissect plant cell and organ growth processes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenyuan Liu ◽  
Yanjia Lv ◽  
Xiaoyue Li ◽  
Zongqin Feng ◽  
Lichen Wang

Abstract Background Tetraploid cotton plants serve as prime natural fiber source for the textile industry. Although various omics studies have revealed molecular basis for fiber development, a better understanding of transcriptional regulation mechanism regulating lint fiber initiation is necessary to meet global natural fiber demand. Results Here, we aimed to perform transcriptome sequencing to identify DEGs (differentially expressed genes) in ovules of the cotton variety Xu142 and its fibreless mutant Xu142fl during early lint fiber initiation period. Totally, 5516 DEGs including 1840 upregulated and 3676 downregulated were identified. GO enrichment analysis revealed that the downregulated DEGs were mainly associated with biological processes such as transcription related biosynthesis and metabolism, organic cyclic compound biosynthesis and metabolism, photosynthesis, and plant cell wall organization, with molecular functions involving transcription related binding, organic cyclic compound binding, and dioxygenase activity, while the upregulated DEGs were associated with DNA replication and phospholipid biosynthetic related processes. Among the 490 DEGs annotated as transcription factor genes, 86.5% were downregulated in the mutant including the Malvaceae-specific MMLs, expression patterns of which were confirmed during the central period of lint fiber initiation. Investigation of the 16 genes enriched in the cell wall organization revealed that 15 were EXPA coding genes. Conclusions Overall, our data indicate that lint fiber initiation is a complicated process involving cooperation of multiple transcription factor families, which might ultimately lead to the reorganization of the cell wall and terminated cell division of the differentiating fiber initials.


2021 ◽  
Author(s):  
Ruilian Li ◽  
Zhuo Wang ◽  
Limeng Zhu ◽  
Dongdong Liu ◽  
Wenjing Wang ◽  
...  

The fungal cell wall is an ideal target for the design of antifungal drugs. In this study we used an analog of cell wall polymer, a highly deacetylated long-chain chitosan oligosaccharide (HCOS), to test its effect against pathogenic Candida strains. Results showed that HCOS was successfully incorporated into the dynamic cell wall organization process and exhibited an apparent antifungal activity against both plankton and mature fungal biofilm, by impairing the cell wall integrity. Unexpectedly, mechanistic studies suggested that HCOS exerts its activity by interfering with family members of PHR β-(1,3)-glucanosyl transferases and affecting the connection and assembly of cell wall polysaccharides. Furthermore, HCOS showed great synergistic activity with different fungicides against Candida cells, especially those in biofilm. These findings indicated HCOS has a great potential as an antifungal drug or drug synergist and proposed a novel antifungal strategy with structure-specific oligosaccharides mimicking cell wall polysaccharide fragments.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 930
Author(s):  
Xiaohan Xu ◽  
Weidong Wang ◽  
Yi Sun ◽  
Anqi Xing ◽  
Zichen Wu ◽  
...  

Nitric oxide (NO) as a momentous signal molecule participates in plant reproductive development and responds to various abiotic stresses. Here, the inhibitory effects of the NO-dominated signal network on the pollen tube growth of Camellia sinensis under low temperature (LT) were studied by microRNA (miRNA) omics analysis. The results showed that 77 and 71 differentially expressed miRNAs (DEMs) were induced by LT and NO treatment, respectively. Gene ontology (GO) analysis showed that DEM target genes related to microtubules and actin were enriched uniquely under LT treatment, while DEM target genes related to redox process were enriched uniquely under NO treatment. In addition, the target genes of miRNA co-regulated by LT and NO are only located on the cell membrane and cell wall, and most of them are enriched in metal ion binding and/or transport and cell wall organization. Furthermore, DEM and its target genes related to metal ion binding/transport, redox process, actin, cell wall organization and carbohydrate metabolism were identified and quantified by functional analysis and qRT-PCR. In conclusion, miRNA omics analysis provides a complex signal network regulated by NO-mediated miRNA, which changes cell structure and component distribution by adjusting Ca2+ gradient, thus affecting the polar growth of the C. sinensis pollen tube tip under LT.


2021 ◽  
Author(s):  
Wenyuan Liu ◽  
Yanjia Lv ◽  
Xiaoyue Li ◽  
Zongqin Feng ◽  
Lichen Wang

Abstract Background Tetraploid cotton plants serve as prime natural fiber source for the textile industry. Although various omics studies have revealed molecular basis for fiber development, a better understanding of transcriptional regulation mechanism regulating lint fiber initiation is necessary to meet global natural fiber demand. Conclusions Here, we aimed to perform transcriptome sequencing to identify DEGs (differentially expressed genes) in ovules of the cotton variety Xu142 and its fibreless mutant Xu142fl during early lint fiber initiation period. Totally, 5516 DEGs including 1840 upregulated and 3676 downregulated were identified. GO enrichment analysis revealed that the downregulated DEGs mainly associated with biological processes such as transcription related biosynthesis and metabolism, organic cyclic compound biosynthesis and metabolism, photosynthesis, and plant cell wall organization, with molecular functions involving transcription related binding, organic cyclic compound binding, and dioxygenase activity, while the upregulated DEGs were associated with DNA replication and phospholipid biosynthetic related processes. Among the 490 DEGs annotated as transcription factor genes 86.5% were downregulated in the mutant including the Malvaceae-specific MMLs, expression patterns of which were confirmed during the central period of lint fiber initiation. Investigation of the 20 genes enriched in the cell wall organization revealed that 17 were EXPA coding genes. Overall, we suggest that lint fiber initiation is a complicated process involving cooperation of multiple transcription factor families, which might ultimately lead to the reorganization of the cell wall and terminated cell division of the differentiating fiber initials.


2021 ◽  
Vol 22 (6) ◽  
pp. 3260
Author(s):  
Jianwei Liu ◽  
Wei Zhang ◽  
Shujie Long ◽  
Chunzhao Zhao

Cell wall biosynthesis is a complex biological process in plants. In the rapidly growing cells or in the plants that encounter a variety of environmental stresses, the compositions and the structure of cell wall can be dynamically changed. To constantly monitor cell wall status, plants have evolved cell wall integrity (CWI) maintenance system, which allows rapid cell growth and improved adaptation of plants to adverse environmental conditions without the perturbation of cell wall organization. Salt stress is one of the abiotic stresses that can severely disrupt CWI, and studies have shown that the ability of plants to sense and maintain CWI is important for salt tolerance. In this review, we highlight the roles of CWI in salt tolerance and the mechanisms underlying the maintenance of CWI under salt stress. The unsolved questions regarding the association between the CWI and salt tolerance are discussed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qin Long ◽  
Meixia Du ◽  
Junhong Long ◽  
Yu Xie ◽  
Jingyun Zhang ◽  
...  

AbstractPathological hypertrophy (cell enlargement) plays an important role in the development of citrus canker, but its regulators are largely unknown. Although WRKY22 is known to be involved in pathogen-triggered immunity and positively regulates resistance to bacterial pathogens in Arabidopsis, rice and pepper, the CRISPR/Cas9-mediated partial knockout of CsWRKY22 improves resistance to Xanthomonas citri subsp. citri (Xcc) in Wanjincheng orange (Citrus sinensis Osbeck). Here, we demonstrate that CsWRKY22 is a nucleus-localized transcriptional activator. CsWRKY22-overexpressing plants exhibited dwarf phenotypes that had wrinkled and thickened leaves and were more sensitive to Xcc, whereas CsWRKY22-silenced plants showed no visible phenotype changes and were more resistant to Xcc. Microscopic observations revealed that the overexpression of CsWRKY22 increased cell size in the spongy mesophyll. Transcriptome analysis showed that cell growth-related pathways, such as the auxin and brassinosteroid hormonal signaling and cell wall organization and biogenesis pathways, were significantly upregulated upon CsWRKY22 overexpression. Interestingly, CsWRKY22 activated the expression of CsLOB1, which is a key gene regulating susceptibility to citrus canker. We further confirmed that CsWRKY22 bound directly to the W-boxes just upstream of the transcription start site of CsLOB1 in vivo and in vitro. We conclude that CsWRKY22 enhances susceptibility to citrus canker by promoting host hypertrophy and CsLOB1 expression. Thus, our study provides new insights into the mechanism regulating pathological hypertrophy and the function of WRKY22 in citrus.


2021 ◽  
Vol 22 (2) ◽  
pp. 785
Author(s):  
Yang Bai ◽  
Yue Shen ◽  
Zhiqiang Zhang ◽  
Qianru Jia ◽  
Mengyuan Xu ◽  
...  

Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of plant height. GUS assay and qRT-PCR analysis in Arabidopsis showed that GPAT1 is highly expressed in flowers, siliques, and seeds. A loss of function mutation in GPAT1 was shown to decrease seed yield but increase plant height through enhanced cell length. Transcriptomic and qRT-PCR data revealed that the expression levels of genes related to gibberellin (GA) biosynthesis and signaling, as well as those of cell wall organization and biogenesis, were significantly upregulated. These led to cell length elongation, and thus, an increase in plant height. Together, our data suggest that knockout of GPAT1 impairs glycerolipid metabolism in Arabidopsis, leading to reduced seed yield, but promotes the biosynthesis of GA, which ultimately enhances plant height. This study provides new evidence on the interplay between lipid and hormone metabolism in the regulation of plant height.


Genetics ◽  
2020 ◽  
Vol 217 (1) ◽  
pp. 1-16
Author(s):  
Deepash Kothiwal ◽  
Swagathnath Gopinath ◽  
Shikha Laloraya

Abstract Cohesin is a conserved chromatin-binding multisubunit protein complex involved in diverse chromosomal transactions such as sister-chromatid cohesion, chromosome condensation, regulation of gene expression, DNA replication, and repair. While working with a budding yeast temperature-sensitive mutant, mcd1-1, defective in a cohesin subunit, we observed that it was resistant to zymolyase, indicating an altered cell wall organization. The budding yeast cell wall is a strong but elastic structure essential for maintenance of cell shape and protection from extreme environmental challenges. Here, we show that the cohesin complex plays an important role in cell wall maintenance. Cohesin mutants showed high chitin content in the cell wall and sensitivity to multiple cell wall stress-inducing agents. Interestingly, temperature-dependent lethality of cohesin mutants was osmoremedial, in a HOG1-MAPK pathway-dependent manner, suggesting that the temperature sensitivity of these mutants may arise partially from cell wall defects. Moreover, Mpk1 hyper-phosphorylation indicated activation of the cell wall integrity (CWI) signaling pathway in cohesin mutants. Genetic interaction analysis revealed that the CWI pathway is essential for survival of mcd1-1 upon additional cell wall stress. The cell wall defect was independent of the cohesion function and accompanied by misregulation of expression of several genes having cell wall-related functions. Our findings reveal a requirement of cohesin in maintenance of CWI that is independent of the CWI pathway, and that may arise from cohesin’s role in regulating the expression of multiple genes encoding proteins involved in cell wall organization and biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document