Vegetation Changes after 10 Years of Grazing Exclusion and Intermittent Burning in a Themeda triandra (Poaceae) Grassland Reserve in South-eastern Australia

1999 ◽  
Vol 47 (4) ◽  
pp. 537 ◽  
Author(s):  
Ian D. Lunt ◽  
John W. Morgan

Changes in the vegetation composition of a remnant Themeda triandra Forsskal grassland in south-eastern Australia were documented following the replacement of stock grazing with intermittent burning at 3–11-year intervals. The vegetation was initially sampled in 1986, 1 year after stock were removed, and then 10 years later in 1996. Most frequently encountered grassland species were abundant in both surveys, although there was little correspondence between species richness at the quadrat scale in 1986 and 1996. Total floristic richness increased slightly over the 10-year period, owing to the proliferation of tall forbs with wind-blown seeds, including exotic thistles and colonising native forbs. Unfortunately, most native ‘increasers’ were ‘weedy’ species which are not typical or common components of species-rich temperate grassland remnants in southern Victoria. Thus, replacing grazing with intermittent burning has not resulted in the flora becoming more similar to that of high-quality, species-rich grassland remnants, but instead, has promoted a group of ruderal colonisers. The ability to identify factors contributing to particular botanical changes was hampered by the design of the management regimes implemented over the past decade. Suggestions are provided to overcome these difficulties, incorporating principles from adaptive management.

2019 ◽  
Vol 70 (12) ◽  
pp. 1044
Author(s):  
M. L. Mitchell ◽  
M. R. McCaskill ◽  
R. D. Armstrong

Approximately 3.1 Mha (22%) of the agricultural area of south-eastern Australia can be classified as native pasture. There is the assumption that, owing to the widespread occurrence of low-fertility soils in Australia, native grass species do not respond to increased phosphorus (P) fertility. Currently, there are no industry recommendations of target soil-test P values for native-grass-based pastures. This paper reviews the responses of perennial native pasture species endemic to south-eastern Australia to P application in controlled environments, surveys, replicated experiments and paired-paddock trials. Eighty-seven site-years of trial data where different levels of P were applied, conducted over the last two decades, on native-based pastures in south-eastern Australia are reviewed. Data indicate that application of P fertilisers to native grass pastures can increase dry matter (DM) production and maintain pasture stability. However, minimum targets for herbage mass (800 kg DM/ha) and groundcover (80%) are required to ensure persistence of perennial native grasses. Stocking rates also need to match carrying capacity of the pasture. Based on previous research, we recommend target soil-test (Olsen; 0–10 cm) P levels for fertility-tolerant native grass pastures, based on Microlaena stipoides, Rytidosperma caespitosum, R. fulvum, R. richardsonii, R. duttonianum and R. racemosum, of 10–13 mg/kg, whereas for pastures based on fertility-intolerant species such as Themeda triandra, lower levels of <6 mg/kg are required to ensure botanical stability.


2016 ◽  
Vol 64 (5) ◽  
pp. 417 ◽  
Author(s):  
Claire Moxham ◽  
Josh Dorrough ◽  
Mick Bramwell ◽  
Brad J. Farmilo

Fire has a major influence on the structure and composition of temperate grasslands and woodlands. We investigated whether the impacts of fire exclusion on a temperate grassland plant community varied according to the scale of investigation and soil texture. Ten sites with known fire histories were selected along a soil texture gradient in south-eastern Australia. Floristics and ground layer attributes were investigated at small (0.25 m2) and large (100 m2) spatial scales in regularly burnt and unburnt grasslands. Fire exclusion over a 10 year period led to declines in native species diversity, richness and cover at both spatial scales and in most cases effects were consistent regardless of soil texture. However, the richness of native plant species at small scales and the cover of native plants at large scales were most negatively influenced by fire exclusion on fine textured soils. Conversely, at large scales, exotic plant richness and cover were only weakly increased by fire exclusion. Responses of eight common species were modelled and in seven of these, fire exclusion was a strong predictor of occurrence, although both positive and negative responses were observed. These results reiterate the importance of frequent fire as a management tool in temperate grasslands, but also shed light on how sites may require specific fire management regimes depending on the underlying soil texture.


Sign in / Sign up

Export Citation Format

Share Document