Directional Weak Intermolecular Interactions: σ-Hole Bonding

2010 ◽  
Vol 63 (12) ◽  
pp. 1598 ◽  
Author(s):  
Jane S. Murray ◽  
Kevin E. Riley ◽  
Peter Politzer ◽  
Timothy Clark

The prototypical directional weak interactions, hydrogen bonding and σ-hole bonding (including the special case of halogen bonding) are reviewed in a united picture that depends on the anisotropic nature of the molecular electrostatic potential around the donor atom. Qualitative descriptions of the effects that lead to these anisotropic distributions are given and examples of the importance of σ-hole bonding in crystal engineering and biological systems are discussed.

2021 ◽  
Author(s):  
Thufail M. Ismail ◽  
Neetha Mohan ◽  
P. K. Sajith

Interaction energy (Eint) of hydrogen bonded complexes of nitroxide radicals can be assessed in terms of the deepest minimum of molecular electrostatic potential (Vmin).


2014 ◽  
Vol 70 (a1) ◽  
pp. C679-C679
Author(s):  
Anna Vologzhanina ◽  
Konstantin Lyssenko

The understanding of the interplay between intermolecular strong and weak interactions requires approaches that are able to identify and quantify all of them, and are applicable to as large number of objects as possible. The QTAIM approach [1] nicely meets the first criteria. Less rigorous approaches, such as the Stockholder [2] and the Voronoi [3] partitioning have the second advantage. The latter can also give qualitative, quantitative and visual representation of intermolecular interactions. We compared how all these approaches would perform for two polymorphs of Fe(Cl2Gm)3(BCH3)2 (monoclinic C (1a), and less stable monoclinic P (1b)) and Co(Cl2Gm)3(BCH3)2 (2) isostructural with 1b (Cl2Gm = dichloroglyoximate). The Voronoi and Stockholder partitionings showed that three fourths of molecular surfaces were attributed to Cl...X (X = Cl, O, N) and C-H...Cl bonds. According to the QTAIM theory, each chlorine atom takes part in at least four intermolecular contacts. The Voronoi tessellation was found to be valid for determinating of the graph of intermolecular bonding. Indeed, in the isostructural 1b and 2 the sets of weak interactions do not coincide due to various conformations of iron- and cobalt-containing clathrochelate cages. Nevertheless, the resulting graph of intermolecular bonding (the gpu-x net) is the same. Qualitative (for all three approaches) and quantitative (for two partitionings) correlation for various methods was demonstrated. This study was supported by the Council of the President of the Russian Federation (MK-5181.2013.3 and MD- 3589.2014.3).


2016 ◽  
Vol 18 (42) ◽  
pp. 29249-29257 ◽  
Author(s):  
Chengqian Yuan ◽  
Haiming Wu ◽  
Meiye Jia ◽  
Peifeng Su ◽  
Zhixun Luo ◽  
...  

Utilizing dispersion-corrected density functional theory (DFT) calculations, we demonstrate the weak intermolecular interactions of phenylenediamine dimer (pdd) clusters, emphasizing the local lowest energy structures and decomposition of interaction energies by natural bond orbital (NBO) and atoms in molecule (AIM) analyses.


CrystEngComm ◽  
2016 ◽  
Vol 18 (44) ◽  
pp. 8631-8636 ◽  
Author(s):  
M. D. Perera ◽  
J. Desper ◽  
A. S. Sinha ◽  
C. B. Aakeröy

Calculated molecular electrostatic potential difference (ΔMEP) of acceptor atoms in a multi component system will lead to different supramolecular architectures.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1406
Author(s):  
Dmitriy F. Mertsalov ◽  
Rosa M. Gomila ◽  
Vladimir P. Zaytsev ◽  
Mikhail S. Grigoriev ◽  
Eugeniya V. Nikitina ◽  
...  

This manuscript reports the synthesis and X-ray characterization of two octahydro-1H-4,6-epoxycyclopenta[c]pyridin-1-one derivatives that contain the four most abundant halogen atoms (Ha) in the structure with the aim of studying the formation of Ha···Ha halogen bonding interactions. The anisotropy of electron density at the heavier halogen atoms provokes the formation of multiple Ha···Ha contacts in the solid state. That is, the heavier Ha-atoms exhibit a region of positive electrostatic potential (σ-hole) along the C–Ha bond and a belt of negative electrostatic potential (σ-lumps) around the atoms. The halogen bonding assemblies in both compounds were analyzed using density functional theory (DFT) calculations, molecular electrostatic potential (MEP) surfaces, the quantum theory of “atom-in-molecules” (QTAIM), the noncovalent interaction plot (NCIplot), and the electron localization function (ELF).


Sign in / Sign up

Export Citation Format

Share Document