halogen atoms
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 59)

H-INDEX

37
(FIVE YEARS 5)

2021 ◽  
pp. 1-10
Author(s):  
Tahereh Mohseniabbasabadi ◽  
Farnoosh Behboodyzad ◽  
Firoozeh Abolhasani Zadeh ◽  
Ebrahim Balali

Vismodegib (Vis) is an anticancer drug, in which its electronic and structural features were examined in this work. To this aim, the chlorine atoms of original Vis model were substituted by other fluorine, bromine, and iodine halogen atoms yielding F-Vis, Br-Vis, and I-Vis in addition to the original Cl-Vis model. The models were optimized by performing quantum chemical calculations and their interactions with the smoothened (SMO) target were examined by performing molecular docking simulations. The results indicated that the stabilized structures of halogenated Vis models were achievable and their features indicated the dominant role of halogen atoms for their participation in interactions with other substances. Based on the obtained results, Br-Vis model was seen suitable for participating in interaction with the SMO target even better than the original Vis model. The hypothesis of this work was affirmed by employing the in silico approach for analyzing the features of singular ligands and for evaluating their biological functions.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7901
Author(s):  
Adriana Dowbysz ◽  
Mariola Samsonowicz ◽  
Bożena Kukfisz

This paper presents a review of flame retardants used for glass/polyester laminates. It concerns flame retardants withdrawn from use such as compounds containing halogen atoms and flame retardants currently used in the industry, such as inorganic hydroxides, phosphorus and nitrogen-containing compounds, antimony, and boron compounds, as well as tin–zinc compounds. Attention is also drawn to the use of nanoclays and the production of nanocomposites, intumescent flame retardant systems, and mats, as well as polyhedral oligomeric silsesquioxanes. The paper discusses the action mechanism of particular flame retardants and presents their advantages and disadvantages.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1406
Author(s):  
Dmitriy F. Mertsalov ◽  
Rosa M. Gomila ◽  
Vladimir P. Zaytsev ◽  
Mikhail S. Grigoriev ◽  
Eugeniya V. Nikitina ◽  
...  

This manuscript reports the synthesis and X-ray characterization of two octahydro-1H-4,6-epoxycyclopenta[c]pyridin-1-one derivatives that contain the four most abundant halogen atoms (Ha) in the structure with the aim of studying the formation of Ha···Ha halogen bonding interactions. The anisotropy of electron density at the heavier halogen atoms provokes the formation of multiple Ha···Ha contacts in the solid state. That is, the heavier Ha-atoms exhibit a region of positive electrostatic potential (σ-hole) along the C–Ha bond and a belt of negative electrostatic potential (σ-lumps) around the atoms. The halogen bonding assemblies in both compounds were analyzed using density functional theory (DFT) calculations, molecular electrostatic potential (MEP) surfaces, the quantum theory of “atom-in-molecules” (QTAIM), the noncovalent interaction plot (NCIplot), and the electron localization function (ELF).


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1053
Author(s):  
S. Vijayakumar ◽  
Duminda S. Ranasinghe ◽  
David M. Wilmouth

It is well established that reaction cycles involving inorganic halogens contribute to the depletion of ozone in the atmosphere. Here, the kinetics of O3 with halogen atoms (Cl, Br, and I) were investigated between 180 and 400 K, expanding the temperature range relative to prior studies. Canonical variational transition state theory including small curvature tunneling correction (CVT/SCT) were considered, following the construction of the potential energy surfaces. MRCI + Q/aug-ano-pVTZ//MP2/aug-cc-pV(T + d)Z and MRCI + Q/aug-ano-RCC-VTZP//MP2/aug-cc-pV(T + d)Z levels of theory were used to calculate the kinetic parameters. Calculated rate coefficients were used to fit the Arrhenius equations, which are obtained to be k1 = (3.48 ± 0.4) × 10−11 exp[(−301 ± 64)/T] cm3 molecule−1 s−1, k2 = (3.54 ± 0.2) × 10−11 exp[(−990 ± 35)/T] cm3 molecule−1 s−1 and k3 = (1.47 ± 0.1) × 10−11 exp[(−720 ± 42)/T] cm3 molecule−1 s−1 for the reactions of O3 with Cl, Br, and I atoms, respectively. The obtained rate coefficients for the reactions of O3 with halogen atoms using CVT/SCT are compared to the latest recommended rate coefficients by the NASA/JPL and IUPAC evaluations. The reactivity trends and pathways of these reactions are discussed.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kaiwei Huang ◽  
Lulu Song ◽  
Kun Liu ◽  
Anqi Lv ◽  
Manjeet Singh ◽  
...  

AbstractUltralong organic phosphorescence (UOP) crystals have attracted increased attention due to the distinct photophysical property of a long-lived lifetime. However, organic crystals are generally brittle, leading to a serious problem for their application in flexible technology. Herein, we report three types of elastic organic crystals (EOCs) with ultralong phosphorescence via introducing halogen atoms (Cl, Br, I) into π-conjugated phosphorescent molecules. Especially, the crystal containing iodine atoms displayed both excellent elasticity (ε = 3.01%) and high phosphorescent efficiency (ΦPh = 19.1%) owing to the strong halogen bonds. Taking advantage of its highly efficient UOP and excellent elasticity, we successfully used a DCz4I crystal for anti-counterfeiting application. These findings may provide guidance for the development of elastic crystals with afterglow and expand the scope of potential applications on flexible materials.


2021 ◽  
Vol 551 ◽  
pp. 149318
Author(s):  
D.M. Hoat ◽  
Duy Khanh Nguyen ◽  
R. Ponce-Pérez ◽  
J. Guerrero-Sanchez ◽  
Vo Van On ◽  
...  

Author(s):  
Jakub Staroń ◽  
Wojciech Pietruś ◽  
Ryszard Bugno ◽  
Rafał Kurczab ◽  
Grzegorz Satała ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ae Ran Lim ◽  
Sun Ha Kim ◽  
Yong Lak Joo

AbstractThe physical properties of the organic–inorganic hybrid crystals having the formula [NH3(CH2)3NH3]ZnX4 (X = Cl, Br) were investigated. The phase transition temperatures (TC; 268K for Cl and 272K for Br) of the two crystals bearing different halogen atoms in their skeletons were determined through differential scanning calorimetry. The thermodynamic properties of the two crystals were investigated through thermogravimetric analysis. The structural dynamics, particularly the role of the [NH3(CH2)3NH3] cation, were probed through 1H and 13C magic-angle spinning nuclear magnetic resonance spectroscopy as a function of temperature. The 1H and 13C NMR chemical shifts did not show any changes near TC. In addition, the 1H spin–lattice relaxation time (T1ρ) varied with temperature, whereas the 13C T1ρ values remained nearly constant at different temperatures. The T1ρ values of the atoms in [NH3(CH2)3NH3]ZnCl4 were higher than those in [NH3(CH2)3NH3]ZnBr4. The observed differences in the structural dynamics obtained from the chemical shifts and T1ρ values of the two compounds can be attributed to the differences in the bond lengths and halogen atoms. These findings can provide important insights or potential applications of these crystals.


Sign in / Sign up

Export Citation Format

Share Document