Kinetic Study of the Radical Azidation with Sulfonyl Azides

2013 ◽  
Vol 66 (3) ◽  
pp. 341 ◽  
Author(s):  
Karin Weidner ◽  
Philippe Renaud

Rate constants for the reaction between a secondary alkyl radical and two different sulfonyl azides were determined using bimolecular competing radical reactions. The rates of azidation were determined by competition with hydrogen atom transfer from tris(trimethylsilyl)silane ((TMS)3SiH) of the 4-phenylcyclohexyl radical. 3-Pyridinesulfonyl azide and trifluoromethanesulfonyl azide were found to have rate constants for azidation of 2 × 105 M–1 s–1 and 7 × 105 M–1 s–1 at 80°C, respectively.

2019 ◽  
Vol 53 (10) ◽  
pp. 5816-5827 ◽  
Author(s):  
Jimmy Murillo-Gelvez ◽  
Kevin P. Hickey ◽  
Dominic M. Di Toro ◽  
Herbert E. Allen ◽  
Richard F. Carbonaro ◽  
...  

Author(s):  
Hunter B. Vibbert ◽  
Hagen Neugebauer ◽  
Jack R Norton ◽  
Andreas Hansen ◽  
Markus Bursch ◽  
...  

The H• transfer rate constants for a series of group 6 molybdenum and tungsten pyrazolyl borate complexes are described. The rate constants for these complexes were found to span a range over 1 magnitude. Analysis of the H• transfer rate constants suggests that a combination of steric, electronic, and enthalpic factors are important in these reactions. Further analysis of the components suggests that the generated 17 e– radicals of these complexes are less electrophilic than the more commonly used CpCr(CO)3H complexes. General implications for H• transfer reactions are discussed.


Sign in / Sign up

Export Citation Format

Share Document