Two 3D ZnII Metal–Organic Frameworks with 3- and 8-Fold Interpenetration: Syntheses, Structures, Photodegradation, and Photoluminescent Properties

2017 ◽  
Vol 70 (3) ◽  
pp. 314 ◽  
Author(s):  
Chuan-Bin Fan ◽  
Xiang-Min Meng ◽  
Yu-Hua Fan ◽  
Zi-Ao Zong ◽  
Xiao-Yin Zhang ◽  
...  

Two novel coordination polymers, namely {[Zn(sbdc)(bmib)]·0.4H2O}n (1) and {[Zn(sbdc)(bibd)]·DMF}n (2) (H2sbdc = 4,4′-stilbenedicarboxylic, bmib = 1,4-bis(2-methylimidazol-1-yl)butane, bibd = 1,1′-(1,4-butanediyl)bis(imidazole), DMF = N,N-dimethylformamide), have been acquired under solvothermal conditions, and have been characterised by elemental analysis, infrared spectra, thermogravimetric analysis, and single-crystal X-ray diffraction (XRD). Single-crystal XRD analysis reveals that 1 shows eight-fold interpenetrating 3D frameworks with a four-connected (66) sqc6 topology and 2 displays four-connected three-fold interpenetrating 3D frameworks. The flexible N-donor ligands play an important role in the construction of the final topological structures for 1 and 2. Furthermore, 1 and 2 exhibit good photodegradation capability and photoluminescence properties.

2021 ◽  
Author(s):  
Qing-Xia Yao ◽  
Miaomiao Tian ◽  
Jun Zheng ◽  
Jintang Xue ◽  
Xuze Pan ◽  
...  

A series of microporous Ln(III)-based metal-organic frameworks (1-Ln) have been hydrothermally synthesized by using 4,4',4''-nitrilotribenzoic acid (H3NTB). Single crystal X-ray diffraction analyses show 1-Ln are isostructural and have 3D porous...


2021 ◽  
Vol 47 (9) ◽  
pp. 593-600
Author(s):  
A. A. Lysova ◽  
V. A. Dubskikh ◽  
K. D. Abasheeva ◽  
A. A. Vasileva ◽  
D. G. Samsonenko ◽  
...  

Abstract Three new metal−organic frameworks based on scandium(III) cations and 2,5-thiophenedicarboxylic acid (H2Tdc) are synthesized: [Sc(Tdc)(OH)]·1.2DMF (I), [Sc(Tdc)(OH)]·2/3DMF (II), and (Me2NH2)[Sc3(Tdc)4(OH)2]·DMF (III) (DMF is N,N-dimethylformamide). The structures of the compounds are determined by single-crystal X-ray structure analysis (CIF file CCDC nos. 2067819 (I), 2067820 (II), and 2067821 (III)). The chemical and phase purity of compound I is proved by elemental analysis, thermogravimetry, X-ray diffraction analysis, and IR spectroscopy.


2021 ◽  
Author(s):  
Hudson de Aguiar Bicalho ◽  
P. Rafael Donnarumma ◽  
Victor Quezada-Novoa ◽  
Hatem M. Titi ◽  
Ashlee J Howarth

<div> <p>Post-synthetic modification (PSM) of metal–organic frameworks (MOFs) is an important strategy for accessing MOF analogues that cannot be easily synthesized <i>de novo</i>. In this work, the rare-earth (RE) cluster-based MOF, Y-CU-10, with <b>shp</b> topology was modified through transmetallation using a series of RE ions, including: La(III), Nd(III), Eu(III), Tb(III), Er(III), Tm(III), and Yb(III). In all cases, metal-exchange higher than 70 % was observed, with reproducible results. All transmetallated materials were fully characterized and compared to the parent MOF, Y-CU-10, in regards to crystallinity, surface area, and morphology. Additionally, single-crystal X-ray diffraction (SCXRD) measurements were performed to provide further evidence of transmetallation occurring in the nonanuclear cluster nodes of the MOF. </p> </div>


Author(s):  
Muhammad Usman ◽  
Lydia Ogebule ◽  
Raúl Castañeda ◽  
Evgenii Oskolkov ◽  
Tatiana Timofeeva

Two structurally different metal–organic frameworks based on Sr2+ ions and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene linkers have been synthesized solvothermally in different solvent systems and studied with single-crystal X-ray diffraction technique. These are poly[[μ12-4,4′,4′′,4′′′-(benzene-1,2,4,5-tetrayl)tetrabenzoato](dimethylformamide)distrontium(II)], [Sr2(C34H18O8)(C3H7NO)2] n , and poly[tetraaqua{μ2-4,4′-[4,5-bis(4-carboxyphenyl)benzene-1,2-diyl]dibenzoato}tristrontium(II)], [Sr3(C34H20O8)2(H2O)4]. The differences are noted between the crystal structures and coordination modes of these two MOFs, which are responsible for their semiconductor properties, where structural control over the bandgap is desirable. Hydrogen bonding is present in only one of the compounds, suggesting it has a slightly higher structural stability.


2021 ◽  
Author(s):  
Jikun Li ◽  
Chuanping Wei ◽  
Yinfeng Han ◽  
Yu Mei ◽  
Xueli Cheng ◽  
...  

By introducing 4-amino-1,2,4-triazole (4-NH2-trz), three new polyoxovanadate-based metal-organic frameworks (PMOFs) [Ni3(4-NH2-trz)6][V6O18]•3H2O (1), [Co3(4-NH2-trz)6][V6O18]•3H2O (2) and [Cu3OH(4-NH2-trz)3H2O][VO3]5•H2O (3) have been synthesized and thoroughly characterized by single-crystal X-ray diffraction (SXRD), powder X-ray...


2020 ◽  
Author(s):  
Zhehao Huang ◽  
meng ge ◽  
Francesco Carraro ◽  
Christian Doonan ◽  
paolo falcaro ◽  
...  

Many framework materials such as metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are synthesized as polycrystalline powders, which are too small for structure determination by single crystal X-ray diffraction (SCXRD). Here, we show that a three-dimensional (3D) electron diffraction method, namely continuous rotation electron diffraction (cRED), can be used for <i>ab initio</i> structure determination of such materials. As an example, we present a complete structural analysis of a biocomposite, denoted BSA@ZIF-C, where Bovin Serum Albumin (BSA) was encapsulated in a zeolitic imidazolate framework (ZIF). Low electron dose was combined with ultrafast cRED data collection to minimize electron beam damage of the sample. We demonstrate that the atomic structure obtained by cRED is as reliable and accurate as that obtained by single crystal X-ray diffraction. The high accuracy and fast data collection open new opportunities for investigation of cooperative phenomena in framework structures at atomic level.


2020 ◽  
Vol 76 (5) ◽  
pp. 398-404
Author(s):  
Zhong-Xuan Xu ◽  
Chun-Yan Ou ◽  
Chun-Xue Zhang

Two three-dimensional cobalt-based metal–organic frameworks with 5-(hydroxymethyl)isophthalic acid (H2HIPA), namely poly[[μ2-1,4-bis(2-methyl-1H-imidazol-1-yl)benzene-κ2 N 3:N 3′][μ2-5-(hydroxymethyl)isophthalato-κ2 O 1:O 3]cobalt(II)], [Co(C9H6O5)(C14H14N4)] n (1), and poly[tris[μ2-1,4-bis(1H-imidazol-1-yl)benzene-κ2 N 3:N 3′]bis[μ3-5-(hydroxymethyl)isophthalato-κ2 O 1:O 3:O 5]dicobalt(II)], [Co2(C9H6O5)2(C12H10N4)3] n (2), were synthesized under similar hydrothermal conditions. Single-crystal X-ray diffraction analyses revealed that 5-(hydroxymethyl)isophthalate (HIPA2−) and 1,4-bis(2-methyl-1H-imidazol-1-yl)benzene (1,4-BMIB) are simple linkers connecting cobalt centres to build a fourfold interpenetration dia framework in complex 1. However, complex 2 is a pillared-layer framework with a (3,6)-connected network constructed by 1,4-bis(1H-imidazol-1-yl)benzene (1,4-DIB) linkers, 3-connected HIPA2− ligands and 6-connected CoII centres. The above significant structural differences can be ascribed to the introduction of the different auxiliary N-donor ligands. Moreover, UV–Vis spectroscopy and Mott–Schottky measurements confirmed that complexes 1 and 2 are typical n-type semiconductors.


Author(s):  
Zhehao Huang ◽  
Meng Ge ◽  
Francesco Carraro ◽  
Christian Doonan ◽  
Paolo Falcaro ◽  
...  

Structure determination by continuous rotation electron diffraction can be as feasible and accurate as single crystal X-ray diffraction without the need for large crystals.


CrystEngComm ◽  
2016 ◽  
Vol 18 (29) ◽  
pp. 5429-5433 ◽  
Author(s):  
Heng Ya Gao ◽  
Le Zhang ◽  
Chang Sheng Yan ◽  
Li Na Meng ◽  
Jian Qiang Li ◽  
...  

2019 ◽  
Vol 75 (a1) ◽  
pp. a119-a119
Author(s):  
Qi Wang ◽  
Shuai Yuan ◽  
Junsheng Qin ◽  
Wenmiao Chen ◽  
Hongcai Zhou

Sign in / Sign up

Export Citation Format

Share Document