Reactions of trifluoromethyl radicals. I. Hydrogen abstraction from dimethyl sulphide

1972 ◽  
Vol 25 (4) ◽  
pp. 803 ◽  
Author(s):  
NL Arthur ◽  
KS Yeo

Hydrogen atom abstraction from (CH3)2S by CF3 radicals has been studied in the temperature range 79-167�: (1) CF3 + CH3SCH3 ←→ CF3H + CH3SCH2 (-1) The rate constant, based on Ayscough's value of 1013.36cmS mol-l s-l for the recombination of CF3 radicals, is given by (k1 in cm3 mol-1 s-l, E in J mol-l): Logk1 = (12.05 � 0.02)-(28710 � 130)/2.303RT Combination of these results with thermochemical data gives a calculated value of log k-1 = 12.2 - 62600/2.303RT for the rate constant of the reverse reaction. ΔH�f(CH3SCH2) and S�(CH3SCH2) are estimated to be 155.6 kJ mol-l and 290 J K-l mol-1 respectively.

1976 ◽  
Vol 29 (7) ◽  
pp. 1483 ◽  
Author(s):  
NL Arthur ◽  
M Lee

Hydrogen abstraction from (CH3),S and CH3COCH3 by CH3 radicals CH3+CH3SCH3 → CH4+CH3SCH2 CH3 + CH3COCH3 → CH4 + CH3COCH2 has been studied in the temperature range 120-245�. The rate constants, based on the value of 1013.34cm3 mol-l s-1 for the recombination of CH3 radicals, are given by (k in cm3 mol-1 s-1, E in kJ mol-1, R = 0.008314 kJ K-1 mol-1): logk1 = (11.62 � 0.08) ? (38.35 � 0.68)/2.303RT logk3 = (11.61 � 0.05) ? (40.48 � 0.46)/2.303RT Combination of the results for (1) with thermochemical data gives a calculated value of Logk-1 = (11.8 -63.7/2.303RT for the rate constant of the reverse reaction. The results for CH3+(CH3)2S are compared with all of the available data for hydrogen abstraction by free radicals from both sulphur-containing compounds, and molecules of the type (CH3)xM.


1973 ◽  
Vol 26 (6) ◽  
pp. 1269 ◽  
Author(s):  
NL Arthur ◽  
BR Harman

Hydrogen atom abstraction from SiH3Cl by CF3 radicals ����������������� CF3 + SiH3Cl → CF3H+SiH2Cl������������������� (1) has been studied in the temperature range 69-168�. The rate constant, based on Ayscough's value of 1013.36 cm3 mol-1 s-1 for the recombination of CF3 radicals, is given by (k1 in cm3 mol-1 s-1, E in kJ mol-1): ������������������ logk1 = (12.38�0.06)-(25.72�0.41)/2.303RT At 400 K, the rate constant for CF3 + SiH3Cl is greater than the average value reported for CF3+SiHCl3 by a factor of 3.6. This is due to a difference in A factors since the activation energies are equal within experimental error.


1960 ◽  
Vol 38 (9) ◽  
pp. 1576-1589 ◽  
Author(s):  
P. J. Boddy ◽  
E. W. R. Steacie

The photolysis of 3-pentanone-d10 has been used as a source of deuterated ethyl radicals and some of their hydrogen abstraction reactions studied over the temperature range 50–300 °C.The compounds neopentane, n-butane, and isobutane were chosen as representative of the basic structural features in the alkane series. The activation energies for abstraction [Formula: see text] are respectively 12.60 ± 0.7, 10.4 ± 0.75, and 8.9 ± 0.6 kcal/mole and the pre-exponential factors (log10(A8/A4)) are 0.300 ± 0.09, 0.082 ± 0.09, and −0.334 ± 0.066 where[Formula: see text]For abstraction of a deuterium atom from the ketone the values obtained are [Formula: see text] in agreement with previous investigations (1, 2).The value of the disproportionation to combination ratio for C2D5 radicals is 0.0985 ± 0.008 independent of temperature.


1979 ◽  
Vol 32 (9) ◽  
pp. 2077 ◽  
Author(s):  
NL Arthur ◽  
KS Yeo

Additional data are presented for hydrogen abstraction from (CH3)2,S by CF3 radicals CF3+(CH3)2S → CF3H+CH2SCH2 (1) leading to a revised value for the rate constant (k in cm3 mol-1 s-1, E in J mol-1): logk1 = (11�83�0�06)-(26910�450)/19.16T Combination of these results with thermochemical data gives a revised value of logk-1 = 11�9-61800/19�145Tfor the rate constant of the reverse reaction.


1969 ◽  
Vol 47 (18) ◽  
pp. 3305-3311 ◽  
Author(s):  
R. E. Berkley ◽  
G. N. C. Woodall ◽  
O. P. Strausz ◽  
H. E. Gunning

The reaction of n-propyl radicals from the photolysis of azo-n-propane with propane has been studied and Arrhenius parameters for hydrogen atom abstraction relative to the recombination of n-propyl radicals determined. From the Arrhenius parameters obtained and the available thermodynamic data, the Arrhenius parameters of the reverse reaction, the hydrogen atom abstraction from propane by iso-propyl radicals, have been calculated.Some complicating factors in the photolysis of azopropane are discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68314-68325 ◽  
Author(s):  
Quan-De Wang ◽  
Weidong Zhang

This work reports a systematic ab initio and chemical kinetic study of the rate constants for hydrogen atom abstraction reactions by hydrogen radical on the isomers of unsaturated C6 methyl esters.


1983 ◽  
Vol 36 (11) ◽  
pp. 2195 ◽  
Author(s):  
H Arican ◽  
NL Arthur

Hydrogen abstraction from H2S by CH3 radicals, produced by the photolysis of azomethane, has been studied in the temperature range 334-432 K. The rate constant, based on the value 1013.34 cm3 mol-1 s-1 for the recombination of CH3 radicals, is given by log k4 = (11.00 � 0.01) - (8760 � 80)/19.145T where k4 is in cm3 mol-1 s-1 and E is in J mol-1. The previous data reported for this reaction are discussed and best values for its Arrhenius parameters are recommended. The results indicate that CH3 radicals react faster than CF3 radicals with H2S; this confirms the importance of polar effects in the hydrogen abstraction reactions of CF3 radicals.


1998 ◽  
Vol 51 (12) ◽  
pp. 1113 ◽  
Author(s):  
Peter Dokolas ◽  
Steven M. Loer ◽  
David H. Solomon

The reaction of 3-methylpentane and 2,4-dimethylpentane toward t-butoxy radicals has been investigated, in neat and benzene solutions, by using the radical trapping technique. Abstraction occurs principally from the tertiary and secondary C-H reaction sites of 3-methylpentane and the tertiary position of 2,4-dimethylpentane. The tertiary and in particular secondary C-H reaction sites of 2,4-dimethylpentane are shown to be considerably less susceptible towards t-butoxy radical facilitated abstraction compared with the equivalent reaction sites of 3-methylpentane. As a result, the latter is three times as reactive as 2,4-dimethylpentane as a neat hydrocarbon solution and seven times as reactive in a diluted mixture of benzene. Diferences in selectivity and rate of hydrogen abstraction, between the substrates, are interpreted in terms of non-bonding interactions retarding t-butoxy radicals from approaching sterically demanding C-H reaction sites. The selectivity from 3-methylpentane is solvent-insensitive whereas abstraction from 2,4-dimethylpentane is modified in benzene. Further, the rate of hydrogen abstraction, from either substrate, to t-butoxy radical β-scission is considerably smaller in benzene. Both observations are interpreted in terms of t-butoxy radical solvation by the aromatic solvent.


2016 ◽  
Vol 18 (6) ◽  
pp. 4594-4607 ◽  
Author(s):  
Ting Tan ◽  
Xueliang Yang ◽  
Yiguang Ju ◽  
Emily A. Carter

The kinetics of hydrogen abstraction by five radicals (H, CH3, O(3P), OH, and HO2) from a biodiesel surrogate, methyl propanoate (MP), is theoretically investigated.


1982 ◽  
Vol 60 (24) ◽  
pp. 3039-3048 ◽  
Author(s):  
J.-R. Cao ◽  
M. H. Back

A system for the measurement of the rate constant for the elementary reaction[Formula: see text]in the temperature range 1111–1200 K is described and is based on the thermal production of an equilibrium concentration of hydrogen atoms. In a mixture of hydrogen with about 10 ppm ethylene this reaction is the rate-controlling step in the hydrogenation of ethylene. The product ethane undergoes rapid secondary dissociation and the final product is methane. The values obtained in the present work, which are represented by the following expression,[Formula: see text](R = 1.987 cal mol−1 deg−1) are compared to those obtained at lower temperature (820–350 K) and to those calculated from measurements of the reverse reaction.


Sign in / Sign up

Export Citation Format

Share Document