HYDROGEN ATOM ABSTRACTION BY ETHYL-d5 RADICALS. PART I

1960 ◽  
Vol 38 (9) ◽  
pp. 1576-1589 ◽  
Author(s):  
P. J. Boddy ◽  
E. W. R. Steacie

The photolysis of 3-pentanone-d10 has been used as a source of deuterated ethyl radicals and some of their hydrogen abstraction reactions studied over the temperature range 50–300 °C.The compounds neopentane, n-butane, and isobutane were chosen as representative of the basic structural features in the alkane series. The activation energies for abstraction [Formula: see text] are respectively 12.60 ± 0.7, 10.4 ± 0.75, and 8.9 ± 0.6 kcal/mole and the pre-exponential factors (log10(A8/A4)) are 0.300 ± 0.09, 0.082 ± 0.09, and −0.334 ± 0.066 where[Formula: see text]For abstraction of a deuterium atom from the ketone the values obtained are [Formula: see text] in agreement with previous investigations (1, 2).The value of the disproportionation to combination ratio for C2D5 radicals is 0.0985 ± 0.008 independent of temperature.


1973 ◽  
Vol 26 (6) ◽  
pp. 1269 ◽  
Author(s):  
NL Arthur ◽  
BR Harman

Hydrogen atom abstraction from SiH3Cl by CF3 radicals ����������������� CF3 + SiH3Cl → CF3H+SiH2Cl������������������� (1) has been studied in the temperature range 69-168�. The rate constant, based on Ayscough's value of 1013.36 cm3 mol-1 s-1 for the recombination of CF3 radicals, is given by (k1 in cm3 mol-1 s-1, E in kJ mol-1): ������������������ logk1 = (12.38�0.06)-(25.72�0.41)/2.303RT At 400 K, the rate constant for CF3 + SiH3Cl is greater than the average value reported for CF3+SiHCl3 by a factor of 3.6. This is due to a difference in A factors since the activation energies are equal within experimental error.



1972 ◽  
Vol 25 (4) ◽  
pp. 803 ◽  
Author(s):  
NL Arthur ◽  
KS Yeo

Hydrogen atom abstraction from (CH3)2S by CF3 radicals has been studied in the temperature range 79-167�: (1) CF3 + CH3SCH3 ←→ CF3H + CH3SCH2 (-1) The rate constant, based on Ayscough's value of 1013.36cmS mol-l s-l for the recombination of CF3 radicals, is given by (k1 in cm3 mol-1 s-l, E in J mol-l): Logk1 = (12.05 � 0.02)-(28710 � 130)/2.303RT Combination of these results with thermochemical data gives a calculated value of log k-1 = 12.2 - 62600/2.303RT for the rate constant of the reverse reaction. ΔH�f(CH3SCH2) and S�(CH3SCH2) are estimated to be 155.6 kJ mol-l and 290 J K-l mol-1 respectively.



1954 ◽  
Vol 32 (6) ◽  
pp. 593-597 ◽  
Author(s):  
P. Ausloos ◽  
E. W. R. Steacie

The hydrogen-abstraction reactions of methyl and ethyl radicals from diethyl ketone have been studied in the temperature range 25 to 160 °C. Azomethane and azoethane were used as photochemical sources of methyl and ethyl radicals. The activation energies found were 7.0 and 7.6 kcal., respectively, for the reactions:[Formula: see text][Formula: see text]If the combination of both methyl and ethyl radicals is assumed to occur at every collision, the steric factors for the two reactions are E1 = 7.4 × 10−4, E2 = 7.1 × 10−4.



1980 ◽  
Vol 33 (7) ◽  
pp. 1437
Author(s):  
NL Arthur ◽  
PJ Newitt

Hydrogen abstraction by CF3 radicals from CH3COOCH3 and CD3COOCH3 has been studied in the temperature range 78-242°, and data have been obtained for the reactions: CF3 + CH3COOCH3 → CF3H+[C3H5O2] �������������(3) CF3 + CH3COOCH3 → CF3H+CH2COOCH3������������ (4) CF3 + CD3COOCH3 → CF3D+CD2COOCH3������������ (6) CF3 + CD3COOCH3 → CF3H+CD3COOCH2������������ (7) The corresponding rate constants, based on the value of 1013.36 cm3 mol-1 S-1 for the recombination of CF3 radicals, are given by (k in cm3 mol-1 s-1 and E in J mol-1): logk3 = (11.52�0.05)-(35430�380)/19.145T ���� (3)logk4 = (11.19�0.07)-(34680�550)/19.145T ���� (4)logk6 = (11.34�0.06)-(46490�490)/19.145T ���� (6)logk7 = (11.26�0.05)-(36440�400)/19.145T ���� (7)At 400 K, 59% of abstraction occurs from the acetyl group, and 41 % from the methoxy group. The kinetic isotope effect at 400 K for attack on the acetyl group is 25, due mainly to a difference in activation energies.



1956 ◽  
Vol 34 (2) ◽  
pp. 103-107 ◽  
Author(s):  
P. B. Ayscough ◽  
E. W. R. Steacie

A study of the reactions of trifluoromethyl radicals, produced by the photolysis of hexafluoroacetone, with propane, n-butane, and isobutane has been made. The rate constants of the hydrogen-abstraction reactions have been determined at temperatures between 27 °C and 119 °C and the activation energies found to be 6.5 ± 0.5, 5.1 ± 0.3, and 4.7 ± 0.3 kcal./mole respectively. These values are compared with those obtained for the reactions with methane and ethane, and with the corresponding reactions of methyl radicals.



1957 ◽  
Vol 79 (1) ◽  
pp. 29-32 ◽  
Author(s):  
David J. Wilson ◽  
Harold S. Johnston


RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68314-68325 ◽  
Author(s):  
Quan-De Wang ◽  
Weidong Zhang

This work reports a systematic ab initio and chemical kinetic study of the rate constants for hydrogen atom abstraction reactions by hydrogen radical on the isomers of unsaturated C6 methyl esters.



1960 ◽  
Vol 38 (11) ◽  
pp. 2128-2135 ◽  
Author(s):  
S. J. W. Price ◽  
K. O. Kutschke

The reactions of C2F5 radicals, produced by the photolysis of (C2F5)2CO, with methane and hydrogen have been studied. Assuming zero activation energy for 2C2F5 → C4F10 the activation energies for C2F5 + CH4 → C2F5H + CH3 and C2F5 + H2 → C2F5H + H are 10.6 kcal/mole and 11.9 kcal/mole respectively. The present results have been correlated with data on the reactions of CF3, C3F7, and CH3 radicals with H2, D2, CH4, and C2H6. Taking Erecombination ≈ 0 in all cases and assuming the frequency factor for the recombination reaction varies little from radical to radical, the order of ease of hydrogen abstraction from a given substrate is CF3 > C2F5 > C3F7 > CH3. Similarly the ease of hydrogen abstraction from a substrate by a given fluorinated radical is C2H6 > H2 > CH4 > D2. A calculation based on very limited data indicates the reaction CH3 + C2F5COC2F5 → CH3COC2F5 + C2F5 may occur with an activation energy of approximately 7 kcal/mole.



1960 ◽  
Vol 38 (8) ◽  
pp. 1339-1345 ◽  
Author(s):  
R. K. Brinton

The reaction of methyl radicals with a group of amines and amine-like compounds has been investigated in the temperature range 125° to 157 °C. The abstraction activation energies of hydrogen atoms from these compounds, the corresponding pre-exponential factors, and the actual reaction rates indicate that the N—H hydrogen atoms are more labile than the C—H atoms in these compounds.



1979 ◽  
Vol 32 (5) ◽  
pp. 1025 ◽  
Author(s):  
NL Arthur ◽  
PJ Newitt

Hydrogen abstraction from CF3COOCH3 and CH3COCH3 by CH3 radicals CF3 + CF3COOCH3 → CH4 + CF3COOCH2 (1) CF3 + CF3COOCH3 → CH4 + CH3COCH2 (3) has been studied in the temperature range 117-244�. The rate constants, based on the value of 1013.34 cm3 mol-1 s-1 for the recombination of CH3 radicals, are given by (k in cm3 mol-1 s-1 and E in J mol-1) : logk1 = (10.39 � 0.11)- (37680 � 880)/19.145T logk3 = (11.53 � 0.02)- (40590 � 170)/19.145T CF3COOCH3 is less susceptible to attack by CH3 radicals than by CF3 radicals by a factor of 2.8 at 400 K, due mainly to a difference in A factors, since the activation energies of the two reactions are almost identical. These results can be rationalized in terms of intermolecular polar repulsion between the CF3 radical and CF3COOCH3.



Sign in / Sign up

Export Citation Format

Share Document