A theoretical study of adduct formation between methanolate and Propan-2-one

1981 ◽  
Vol 34 (6) ◽  
pp. 1189 ◽  
Author(s):  
JC Sheldon

Ab initio molecular orbital calculations at the STO-3G level of approximation predict that the methoxide anion bonds through its oxygen atom to form complexes with acetone in at least three different ways: (i) A tetrahedral adduct at the carbonyl carbon (ΔE -262 kJ mol-1). (ii) A hydrogen-bond complex with a single hydrogen of one methyl group (- 100 kJ mol-1). (iii) A symmetrical bidentate hydrogen-bond complex with a hydrogen from each acetone methyl group (- 143 kJ mol-1).

2001 ◽  
Vol 74 (12) ◽  
pp. 2421-2430 ◽  
Author(s):  
Osamu Takahashi ◽  
Yuji Kohno ◽  
Sachiyo Iwasaki ◽  
Ko Saito ◽  
Michio Iwaoka ◽  
...  

2000 ◽  
Vol 55 (1-2) ◽  
pp. 315-322
Author(s):  
Nobuo Nakamura ◽  
Hirotsugo Masui ◽  
Takahiro Ueda

Ab initio Hartree-Fock molecular orbital calculations were applied to the crystalline imidazole and its derivatives in order to examine systematically the effect of possible N-H---N type hydrogen bond-ing on the nuclear quadrupole interaction parameters in these materials. The nitrogen quadrupole coupling constant (QCC) and the asymmetry parameter (η) of the electric field gradient (EFG) were found to depend strongly on the size of the molecular clusters, from single molecule, to dimer, trimer and to the infinite molecular chain, i.e., crystalline state, implying that the intermolecular N-H -N hydrogen bond affects significantly the electronic structure of imidazole molecule. A certain correla-tion between the QCC of 14N and the N-H bond distance R was also found and interpreted on the basis of the molecular orbital theory. However, we found that the value of the calculated EFG at the hy-drogen position of the N-H group, or the corresponding QCC value of 2 H, increases drastically as R-3 when R is shorter than about 0.1 nm, due probably to the inapplicability of the Gaussian basis sets to the very short chemical bond as revealed in the actual imidazole derivatives. We suggested that the ob-served N-H distances in imidazole derivatives should be re-examined.


2001 ◽  
Vol 57 (6) ◽  
pp. 850-858 ◽  
Author(s):  
Nahossé Ziao ◽  
Jérôme Graton ◽  
Christian Laurence ◽  
Jean-Yves Le Questel

The relative hydrogen-bond acceptor abilities of amino and cyano N atoms have been investigated using data retrieved from the Cambridge Structural Database and via ab initio molecular orbital calculations. Surveys of the CSD for hydrogen bonds between HX (X = N, O) donors, N—T—C≡N (push–pull nitriles) and N—(Csp 3) n —C≡N molecular fragments  show that the hydrogen bonds are more abundant on the nitrile than on the amino nitrogen. In the push–pull family, in which T is a transmitter of resonance effects, the hydrogen-bonding ability of the cyano nitrogen is increased by conjugative interactions between the lone pair of the amino substituent and the C≡N group: a clear example of resonance-assisted hydrogen bonding. The strength of the hydrogen-bonds on the cyano nitrogen in this family follows the experimental order of hydrogen-bond basicity, as observed in solution through the pK HB scale. The number of hydrogen bonds established on the amino nitrogen is greater for aliphatic aminonitriles N—(Csp 3) n —C≡N, but remains low. This behaviour reflects the greater sensitivity of the amino nitrogen to steric hindrance and the electron-withdrawing inductive effect compared with the cyano nitrogen. Ab initio molecular orbital calculations (B3LYP/6-31+G** level) of electrostatic potentials on the molecular surface around each nitrogen confirm the experimental observations.


1991 ◽  
Vol 69 (4) ◽  
pp. 632-637 ◽  
Author(s):  
Geoffrey Andrew Yeo ◽  
Thomas Anthony Ford

The molecular structure, interaction energy, and infrared spectrum of the linearly hydrogen bonded 1:1 molecular complex of water and ammonia have been predicted by means of a series of ab initio molecular orbital calculations, at the level of second order Møller–Plesset perturbation theory, using the 6-31G** basis set. The calculated wavenumbers and intensities have been compared with those calculated earlier for the respective monomers, and the wavenumber shifts and intensity changes rationalized in terms of the hydrogen bond interaction responsible for the stability of the complex.The calculated hydrogen bond energy of the complex has been compared with those of the linear water and ammonia dimers, reported in a previous publication, and the relative strengths of interaction of the three aggregates have been rationalized on the basis of the electron donor/acceptor capacities of the respective monomer units. Key words: ab initio, infrared spectrum, water, ammonia.


1997 ◽  
Vol 53 (6) ◽  
pp. 1017-1024 ◽  
Author(s):  
F. H. Allen ◽  
C. A. Baalham ◽  
J. P. M. Lommerse ◽  
P. R. Raithby ◽  
E. Sparr

Crystallographic data for 620 C—nitro-O...H—N,O hydrogen bonds, involving 560 unique H atoms, have been investigated to the van der Waals limit of 2.62 Å. The overall mean nitro-O...H bond length is 2.30 (1) Å, which is much longer (weaker) than comparable hydrogen bonds involving >C=O acceptors in ketones, carboxylic acids and amides. The donor hydrogen prefers to approach the nitro-O atoms in the C—NO2 plane and there is an approximate 3:2 preference for hydrogen approach between the two nitro-O atoms, rather than between the C and O substituents. However, hydrogen approach between the two O acceptors is usually strongly asymmetric, the H atom being more closely associated with one of the O atoms: only 60 H atoms have both O...H distances \leq 2.62 Å. The approach of hydrogen along putative O-atom lone-pair directions is clearly observed. Ab-initio-based molecular orbital calculations (6-31G** basis set level), using intermolecular perturbation theory (IMPT) applied to the nitromethane–methanol model dimer, agree with the experimental observations. IMPT calculations yield an attractive hydrogen-bond energy of ca −15 kJ mol−1, about half as strong as the >C=O...H bonds noted above.


Sign in / Sign up

Export Citation Format

Share Document