Preparation, and complexes with nickel(II) and copper(II), of a diazepane amine alcohol. The structure of [4,4-dimethyl-7-(5,5,7-trimethyl-1,4-diazepan-1-yl)-5-azaheptan-2-ol]nickel(II) perchlorate

1983 ◽  
Vol 36 (7) ◽  
pp. 1341 ◽  
Author(s):  
KR Morgan ◽  
GJ Gainsford ◽  
NF Curtis

Reduction of 4,4,12,12-tetramethyl-5,8,11-triazapentadecane-2,14-dione diperchlorate by sodium borohydride yields as the major product one isomer of 4,4-dimethyl-7-(5,5,7-trimethyl-1,2-diazepam 1-yl)-5-azaheptan-2-ol, pyaz. The coordination compounds [M(pyaz)] (ClO4), and [Ni(pyaz)(NCS)] CNS (M = NiII, CuII) were prepared, the latter being assigned five-coordinate structures. The structure of singlet ground state [Ni(pyaz)] (ClO4)2 was determined by X-ray diffraction [space group P212121, Z 4, a 1450.8(2), b 1522.2(1), c 1048.5(1) pm, R 0.0675, Rw 0.0768 for 2461 reflections]. The compound has a square-planar coordination arrangement, with the three nitrogen and the oxygen donor atoms of the pyaz ligand approximately coplanar [Ni-O 190.0(6) pm; Ni-N 192.8(6), 189.2(6), 189.2(6) pm in sequence N(5) of chain, N(l), N(4) of diazepane]. The diazepane ring adopts a boat conformation. One side of the nickel(II) coordination plane is sterically crowded by the presence of two axial methyl substituents. The ligand has two non-equivalent chiral centres (C(14) of the diazepane ring and C(2) of the amine alcohol chain), both present in the R configuration in the crystal studied. The three nitrogen atoms, which became chiral centres upon coordination, are present in the S configuration for two diazepane nitrogen atoms and in the R configuration for the 5-aza chain nitrogen.

2000 ◽  
Vol 53 (9) ◽  
pp. 727 ◽  
Author(s):  
Neil F. Curtis ◽  
Olga P. Gladkikh

The cyclic tetraamine compound (4RS,12RS)-(2,2,4,10,10,12-hexamethyl-1,5,9,13-tetraazacyclohexadecane) nickel(II) perchlorate, [Ni(L1 )] (ClO4)2, has been prepared by reduction of the imine functions of (2,4,4,10,12,12-hexamethyl-1,5,9,13-tetraazacyclohexadeca-1,9-diene)nickel(II) by catalytic hydrogenation, or by NaBH4 in acetonitrile/methanol. The ligand L 1 was isolated, after reaction with acid, as the salt [(L 1 )H4](ClO4)Cl3·H2O. Compounds with cobalt(II), copper(II), and zinc(II) were prepared from this, and the structures of [M(L 1 )] (ClO4)2, M = Co, Ni and Cu, and [Cu(L 1 )] [ZnCl4], determined by X-ray diffraction: [Co(C18H40N4)] (ClO4)2, orthorhombic, Pn21/a, a 8.644(3), b 14.869(8), c 19.541(7) Å, Z 4, R1 0.062 for 99 reflections with I > 2s(I); [Ni(C18H40N4)] (ClO4)2, monoclinic, C2/c, a 11.780(4), b 12.580(4), c 16.930(3) Å, b 90.14(4)˚, Z 4, R1 0.067 for 1644 reflections with I > 2s(I); [Cu(C18H40N4)] (ClO4)2, monoclinic, C2/c, a 11.508(7), b 13.17(2), c 16.83(1) Å, b 92.37(5)˚, Z 4, R1 0.114 for 2366 reflections with I > 2s(I); [Cu(C18H40N4)] [ZnCl4], monoclinic, P21/n, a 9.392(3), b 14.915(6), c 17.591(7) Å, b 95.94(3)˚, Z 4, R1 0.041 for 2301 reflections with I > 2s(I). All have the C-rac, 1RS,4SR,5RS,9RS,12RS,13SR, configuration with N–H groups alternating on opposite sides of the molecular ‘plane’ around the ring. All have flattened tetrahedral coordination geometry, with the quartet ground state cobalt(II) cation most twisted and the copper(II) tetrachlorozincate, perchlorate and singlet ground state nickel(II) complex cations progressively more flattened. The macrocycles have overall saddle-like conformations with chelate rings tilted alternately to opposite sides of the molecular ‘plane’. The compounds all have both trimethyl-substituted chelate rings in chair conformations. The unsubstituted chelate rings both have chair conformations for the cobalt(II) compound, both have twist-boat conformations for the nickel(II) and copper(II) perchlorate salts and have one chair and one twist-boat conformation for the copper(II) tetrachlorozincate salt. Mean M–N distances (Å) and trans-N–M–N angles {N(1)–M–N(9), N(5)–M–N(13) (degrees)} are: Co, 1.99, 130.3(5), 115.5(5); Ni, 1.93, 163.6(4), 155.8(4); Cu (ClO4), 1.99, 155.0(6), 143.8(7); Cu (ZnCl4) 2.00, 146.6(2), 135.0(2). The influence of axial interactions with counter ions, hydrogen bonding and other lattice interactions on the structures adopted are discussed. Strain energies for the possible configurations/conformations of coordinated L 1 have been calculated by molecular mechanics and related to the observed structures.


1979 ◽  
Vol 57 (1) ◽  
pp. 57-61 ◽  
Author(s):  
R. Melanson ◽  
F. D. Rochon

The crystal structure of [Pt(diethylenetriamine)(guanosine)](ClO4)2 has been determined by X-ray diffraction. The crystals are orthorhombic, space group P212121, with a = 12.486(6), b = 13.444(7), c = 14.678(11) Å, and Z = 4. The structure was refined by block-diagonal least-squares analysis to a conventional R factor of 0.050 and a weighted Rw = 0.045.The coordination around the platinum atom is square planar. Guanosine is bonded to platinum through N(7). The purine planar ring makes an angle of 62.7° with the platinum coordination plane. The structure is stabilized by hydrogen bonding.


2017 ◽  
Vol 73 (8) ◽  
pp. 1148-1150
Author(s):  
Shravan Kumar Ellandula ◽  
Cosmos Opoku Amoako ◽  
Joel T. Mague ◽  
Perumalreddy Chandrasekaran

The unsymmetrical α-diimine ligand N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline, [ArN=C(Me)—(Et)C=NAr] [Ar = 2,6-(iPr)2C6H3], (I), and the corresponding palladium complex, cis-(N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline)dichloridopalladium(II) 1,2-dichloroethane monosolvate, [PdCl2(C29H42N2)]·C2H4Cl2 or cis[PdCl2{I}], (II), have been synthesized and characterized. The crystal and molecular structure of the palladium(II) complex have been established by single-crystal X-ray diffraction. The compound crystallized along with a 1,2-dichloroethane solvent of crystallization. The coordination plane of the PdII atom shows a slight tetrahedral distortion from square-planar, as indicated by the dihedral angle between the PdCl2 and PdN2 planes of 4.19 (8)°. The chelate ring is folded along the N...N vector by 7.1 (1)°.


1986 ◽  
Vol 39 (10) ◽  
pp. 1509 ◽  
Author(s):  
NF Curtis ◽  
GJ Gainsford

The crystal and molecular structure has been determined by X-ray diffractometry for the singlet ground state nickel(II) compound of a fifteen- membered tetraaza macrocyclic ligand , formed by reaction of a mixture of tris ( ethanediamine )nickel(II) and tris (propane-1,3- diamine )nickel(II) perchlorates with acetone. The compound, (1RS,8SR)- 5,7,7,13,15,15-hexamethyl-1,4,8,12-tetraazacyclopentadeca-4,12- diene )nickel(II) perchlorate hydrate, [Ni( hmpd )](ClO4)2.H2O, is monoclinic, space group P21/C, a 1158.76(14), b 1319.53(22), c 1630.35(21) pm, β 96.209(10)°, R 0.046, Rw 0.062 for 2798 reflections. The nickel(II) ion is in tetrahedrally distorted square-planar coordination [mean Ni-N distances 188.9 pm ( imine ), 191.9 pm (amine), displacements of nitrogens c. �20 pm from mean coordination plane]. Triplet ground state compounds [Ni( hmpd )( acac )]ClO4 and [{Ni( hmpd )}2C2O4](ClO4)2, with the macrocycle in folded coordination, were prepared and converted into an isomeric form of [Ni( hmpd )](ClO4)2. The 3,5,7,7,13,15,15-heptamethyl homologue of [Ni( hmpd )]2+ was prepared by reaction of tris (propane-1,2-diamine)- and tris (propane-1,3-diamine)- nickel(II) perchlorates with acetone. The electronic (d-d), 1H N.M.R. and 13C N.M.R . spectra of compounds of these macrocyclic cations, and of (5,5,7,13,15,15-hexamethyl-1,4,8,12-tetraazacyclopentadeca-7,12-diene) nickel(II) are reported.


1992 ◽  
Vol 47 (4) ◽  
pp. 517-525 ◽  
Author(s):  
Thomas G. Meyer ◽  
Peter G. Jones ◽  
Reinhard Schmutzler

A new synthesis for 2-chloro-1,3,5-trimethyl-4,6-dioxo-1,3,5,2λ3-triazaphosphinane (1) is described. Chlorine-fluorine exchange in 1 by means of sodium fluoride in acetonitrile in the presence of catalytic amounts of a crown ether furnished 2-fluoro-1,3,5-trimethyl-4,6-dioxo-1,3,5,2λ3-triazaphosphinane (2). The synthesis of the bromine and iodine analogues, 3 and 4, by metathesis of 1 with the appropriate trimethylsilyl halides, Me3SiBr and Me3SiI, respectively, is also described. The syntheses of an iron(0)tetracarbonyl complex (5) and of a dichloroplatinum( II) complex (6) are reported. A single crystal X-ray diffraction study was conducted on 6. [P21/c, a = 1161.3(3), b = 1423.2(3), c = 1247.7(3) pm, β = 109.42(2)°, R = 0.028], There are deviations from ideal square planar geometry at platinum. The heterocycles display a flattened boat conformation. A Staudinger reaction of 1 with Me3SiN3 led to the formation of a substituted cyclotriphosphazene.


1996 ◽  
Vol 61 (9) ◽  
pp. 1335-1341 ◽  
Author(s):  
Petr Štěpnička ◽  
Ivana Císařová

The crystal structure of [(η4-C8H12)PdBr2] has been determined by a single crystal X-ray diffraction with R = 3.82% for 2 147 independent diffractions. The compound crystallizes with the symmetry of orthorhombic space group P212121 (No. 19) within the following parameters: a = 7.0785(5) Å, b = 11.1896(9) Å, c = 12.514(1) Å, V = 991.2(1) Å3, Z = 4. The square planar arrangement of ligands around Pd(II) is distorted due to the steric requirements of 1,5-cyclooctadiene in a twisted boat conformation. Formula units are joined by the weak C2-H2...Br1(1 + x, y, z) hydrogen bonds.


1989 ◽  
Vol 67 (1) ◽  
pp. 48-53 ◽  
Author(s):  
David Eric Berry ◽  
Jane Browning ◽  
Gordon William Bushnell ◽  
Keith Roger Dixon ◽  
Alan Pidcock

Reaction of "cyclamphosphorane" (cyclamPH) with [Pt2Cl4(PEt3)2] yields [PtCl(PEt3)(cyclamPH)]Cl. The complex crystallizes as a dichloromethane solvate in the monoclinic space group P21/n, with a = 13.877(3), b = 23.231(7), c = 8.295(2)Å, β = 91.86(4)°, and an X-ray diffraction study shows square planar platinum coordination in which the labile proton of cyclamPH has transferred from phosphorus to nitrogen and the ligand is attached via simple [Formula: see text] chelation. The phosphorus is trans to chlorine in the platinum coordination plane.The corresponding product, trans-[PtCl2(PEt3)(cyclenPH2)]Cl, derived from reaction of "cyclenphosphorane" (cyclenPH) with [Pt2Cl4(PEt3)2], is shown by NMR studies to have a quite different structure in which the ligand is protonated at two nitrogen sites but not at phosphorus. The phosphorus is pentacoordinate with four attachments to nitrogen atoms and one to platinum. The two chlorine atoms are mutually trans in the platinum coordination plane. Keywords: crystal structure, cyclenphosphorane reaction, cyclamphosphorane reaction, X-ray diffraction.


1980 ◽  
Vol 58 (4) ◽  
pp. 381-386 ◽  
Author(s):  
F. D. Rochon ◽  
P. C. Kong ◽  
B. Coulombe ◽  
R. Melanson

The interactions between [Pd(dien)Cl]Cl and some nucleosides and nucleotides were studied by nmr. The binding site of guanosine, guanosinemonophosphoric acid, xanthosine, and inosine is N(7). Cytidine is coordinated to palladium through N(3). Adenosinemonophosphate acts as a bidentate, binding two different palladium atoms at N(1) and N(7).The crystal structure of [Pd(dien)(guanosine)](ClO4)2 has been determined by X-ray diffraction. The crystals are orthorhombic, space group P212121, with a = 13.422, b = 14.587, c = 12.432, and Z = 4. The structure was refined by block-diagonal least-squares analysis to a conventional R factor of 0.047 and a weighted Rw = 0.043. The coordination around the palladium atom is square planar. Guanosine is bonded to palladium through N(7). The planar purine ring makes an angle of 63.4° with the palladium coordination plane. The structure is stabilized by hydrogen bonding.


Author(s):  
Marcos V. Palmeira-Mello ◽  
Ana B. Caballero ◽  
Aida Lopez-Espinar ◽  
Guilherme P. Guedes ◽  
Amparo Caubet ◽  
...  

AbstractTwo square-planar coordination compounds, namely [Cu(CPYA)Cl2] (1) and [Pd(CPYA)Cl2] (2), were prepared from the ligand 4-chloro-N-(pyridin-2-ylmethyl)aniline (CPYA) and two chloride salts, and were fully characterized, including by X-ray diffraction. Spectroscopic, electrophoretic and AFM studies revealed that the two isostructural compounds were interacting differently with DNA. In both cases, the initial interaction involves electrostatic contacts of the CPYA ligand in the minor groove (as suggested by molecular docking), but subsequent strong binding occurs with the palladium(II) complex 2, whereas the binding with the copper complex 1 is weaker and concentration dependent. The strong binding of 2 eventually leads to the cleavage of the double strand and the redox activity of 1 allows to oxidatively cleave the biomolecule. Graphic abstract


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


Sign in / Sign up

Export Citation Format

Share Document