Synthesis and Structure of a Binuclear [Bis(ethane-1,2-diamine)nickel(II)]-μ-(ethane-1,2-dithiolato)-[(ethane-1,2-dithiolato)Nickel(II)] Complex [Ni(en)2(μ-C2O2S2)Ni(C2O2S2)], and the Related 3,4-Dimercaptocyclobutene-1,2-dionato Complex

1990 ◽  
Vol 43 (3) ◽  
pp. 601 ◽  
Author(s):  
PDW Boyd ◽  
J Hope ◽  
CL Raston ◽  
AH White

The reaction of planar bis nickel(II) chelates of the ethanebis ( thioate ) ( dithiooxalate ) dianion (C2O2S22-, dto ) or the 3,4-dimercaptocyclobutene-1,2-dionate(2-)( dithiosquarate ) dianion (C4O2S22-, dts ) with bis (ethane-1,2-diamine)nickel(II) dinitrate [NiII (en)2(NO3)2 ]leads to the formation of neutral binuclear complexes of the form [Ni(en)2Ni(L)2] (L= dto or dts ), (1) and (2). An X-ray crystal structure of the dithiooxalate complex has been performed which confirms the formulation of a μ- dithiooxalato bridged binuclear complex based on analytical, magnetic and spectroscopic data. The crystals of [Ni(en)2Ni( dto )2] are orthorhombic, space group Pcnn a 8.371(8), b 17.65(1), c 23.37(2)Ǻ and Z 8; a total of 853 unique data with I > 2σ(I) were refined to R 0.073. The molecule is found to be binuclear with a dithiooxalate dianion bridging a six-coordinate Ni(en)2O2 moiety and a planar four-coordinate Ni( dto )S2 group.

1993 ◽  
Vol 57 (387) ◽  
pp. 329-336 ◽  
Author(s):  
M. A. Hoyos ◽  
T. Calderon ◽  
I. Vergara ◽  
J. Garcia-Solé

AbstractX-ray diffraction refinement of the crystal structure of eosphorite has been carried out with reference to the orthorhombic space group Cmca. The structure is similar to that previously described by Hanson (1960), but the standard deviations are improved. Optical absorption and photoluminescence have also been studied for this mineral. Two sharp emission lines, denoted as R1 and R2, superimposed to a broad band (630-750 nm) have been related to the presence of Cr3+ ions. The excitation spectrum of these emissions confirms that the absorption (excitation) bands centred at 431 nm and 585 are related to with 4A2 → 4T1 and 4A2 → 4T2 spin allowed transitions of this ion.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


1988 ◽  
Vol 43 (4) ◽  
pp. 497-498
Author(s):  
Franz A. Mautner ◽  
Harald Krischner ◽  
Christoph Kratky

Abstract The crystal structure of Rb2Ca(N3)4 · 4H2O has been determined by single crystal X-ray methods. The compound is isotypic with K2Ca(N3)4 · 4 H2O and crystallizes in the orthorhombic space group Ccca, Z = 4, a = 1949.1(12) pm, b = 1099.5(3) pm, c - 622.2(1) pm.


2007 ◽  
Vol 62 (10) ◽  
pp. 1271-1276 ◽  
Author(s):  
Liang Chen ◽  
Xian-Wen Wanga ◽  
Jing-Zhong Chen ◽  
Jian-Hong Liu

The complexes Mn(Cl3CCOO)2(4,4′-bpy) (1) and [Cu2(ClCH2COO)(2,2′-bpy)2(OH)(H2O)]-(NO3)2(2) (bpy = bipyridine) were generated under mild reaction conditions and characterized by IR spectra, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and single crystal X-ray diffraction. Compound 1 exhibits a two-dimensional network with octahedrally coordinated Mn(II) atoms linked by 4,4′-bpy ligands and Cl3COO− ligands. Compound 2 features a supramolecular structure of binuclear complexes, with edge-sharing five-coordinated square-pyramidal units bridged by the ClCH2COO− ligand, an OH− group and a water molecule. Complex 1 crystallizes in the orthorhombic space group Pbcn with cell parameters: a = 16.5390(17), b = 11.6396(17), c = 9.9181(12) Å, V = 1909.3(4) Å3, Z = 4, wR2 = 0.1576. Complex 2 crystallizes in the triclinic space group P1̅ with cell parameters: a = 7.6190(15), b = 11.151(2), c = 16.640(3) Å , α = 73.13(3), β = 80.89(3), γ = 74.51(3)°, V = 1298.73(4) Å3, Z = 2, wR2 = 0.1265.


1990 ◽  
Vol 43 (12) ◽  
pp. 2083 ◽  
Author(s):  
DC Craig ◽  
VJ James ◽  
JD Stevens

The crystal structure of the title compound (1) has been determined by X-ray diffraction. Crystals of (1) are orthorhombic, space group P21212 with a 11.425(1), b 24.916(1), c 5.8952(3)Ǻ, Z 4. Refinement on 1675 observed reflections measured with Cu Kα radiation converged at R 0.034. The seven- membered ring adopts a boat conformation in which the pseudo plane of symmetry passes through the ring oxygen.


1990 ◽  
Vol 43 (11) ◽  
pp. 1861 ◽  
Author(s):  
TW Hambley ◽  
A Poiner ◽  
WC Taylor

From the deep violet, encrusting marine sponge Chelonaplysilla violacea, two rearranged spongian diterpenes, aplyviolene, (1R*,1′S*,3?aR*,5R*,6R*,8R*,8′aS*)-3-oxo-8-(1′,4′,4′-trimethyl-8′-methylenedecahydroazulen-1′-yl)-2,7-dioxabicyclo[3.2.1]oct-6-yl acetate (1), the acetoxy derivative, aplyviolacene (2), (5R*,8S*,9S*,10R*,13S*,14R* ,15S*,16R*)-spongian-15,16-diyl diacetate (3) and (5R*,8S*,9S*,10R*,13S*,14R*)-spongian-16-one (4) were isolated. The structures were determined by spectroscopic methods, and the structure of aplyviolene was confirmed by a single-crystal X-ray determination. The crystal structure was refined to a residual of 0.036 for 1125 independent observed reflections. The crystals were orthorhombic, space group P212121 with a 8.098(1), b 11.628(1), c 21.774(3)Ǻ.


1998 ◽  
Vol 53 (8) ◽  
pp. 816-818 ◽  
Author(s):  
W. Preetz ◽  
S. Zander ◽  
C. Bruhn

Abstract By reaction of [B6H6]2-with (SCN)2 in dichloromethane at -80 C° the thiocyanatohexaborate anion is formed and can be isolated by ion exchange chromatography on diethylaminoethyl (DEAE) cellulose. The X-ray structure determination of Cs2[B6H5(SCN)] (orthorhombic, space group Pbca with a = 9.506(5), b = 10.644(5), c = 21.857(5) Å, Z = 8) reveals that the SCN substituent is bonded via the S atom with the B-S distance of 1.885(9) Å and the B-S-C angle of 99.8(5)°. The SCN group is nearly linear (179.9(9)°).


1988 ◽  
Vol 41 (7) ◽  
pp. 1127 ◽  
Author(s):  
SF Colmanet ◽  
MF Mackay

The reaction of sodium 1,2-dicyanoethenedithiolate [( mnt )Na2] with (NH4)2 [TcBr6] in ethanol yields crystals of (AsPh4)2 [ Tc ( mnt )3] (1) after precipitation with AsPh4Cl. The crystal structure of (1) has been determined by X-ray diffraction. Crystals are orthorhombic, space group Pbcn , a 20.256(1), b 15.513(1), c 18.274(1)Ǻ, Z 4. Refinement on 2910 diffractometer data measured with Cu Kα radiation converged at R 0.056. The structure consists of [ Tc ( mnt )3]2- anions and (AsPh4)+ cations . The technetium(IV) atom is coordinated to six sulfur atoms to give a distorted octahedron.


2007 ◽  
Vol 353-358 ◽  
pp. 3043-3046 ◽  
Author(s):  
Ping Li Qin ◽  
Liang Qin Nong ◽  
Ji Liang Zhang ◽  
Hai Qing Qin ◽  
Jiang Ping Liao ◽  
...  

The crystal structure of a new compound NdFeSb3 has been determined by X-ray powder diffraction using the Rietveld method. The compound crystallizes in the orthorhombic, space group Pbcm (No.57) with the CeNiSb3 structure type and lattice parameters a=1.26828(2)nm, b=0.61666(2)nm, c=1.81867(4) nm, z=12 and Dcalc=7.917g/cm3.


1998 ◽  
Vol 53 (5-6) ◽  
pp. 634-636 ◽  
Author(s):  
Martina Näveke ◽  
Armand Blaschette ◽  
Peter G. Jones

Abstract The crystal structure of the known title compound was determined by low-temperature X-ray diffraction (orthorhombic, space group Pbcn, Z = 4). The molecule displays an unusually short O-N bond, a relatively long C-O bond and a moderately pyramidal O-NS2 skeleton (O-N 133.1, C-O 148.5 pm, sum of bond angles at N: 347.4°).


Sign in / Sign up

Export Citation Format

Share Document