Evaluation of a formulation of Bacillus thuringiensis against waxmoths in stored honeycombs

1991 ◽  
Vol 31 (5) ◽  
pp. 709 ◽  
Author(s):  
SC McKillup ◽  
DG Brown

Waxmoths cause significant damage to stored honeycombs of the Western honeybee Apis mellifera in Australia. A field experiment was designed to evaluate the effectiveness of a commercial formulation (Certan) of the biological control agent Bacillus thuringiensis in preventing this damage.Treatment applied at the manufacturer's recommended rate of 855 units per cm2 of honeycomb almost completely prevented damage, while untreated combs showed an average of 76% damage. The cost and practicality of applying the formulation of B. thuringiensis are discussed, together with the recommendation that new control methods for waxmoths should be researched.

2021 ◽  
Author(s):  
Samira Khodayari ◽  
Nayereh Hamedi

Spider mites (family Tetranychidae) are important pests of many agricultural, medicinal and ornamental plants worldwide. They possess needle-like chelicerae which pierce plant cells, often feeding on chloroplasts on the under surface of the leaf and cause upper leaf surfaces develop whitish or yellowish stippling. Additionally spider mites produce silk webbing which covers the leaves. In this chapter we present common control methods of these mites including biological control with emphasizing on the prey preference, switching behavior and mutual interference of a biological control agent, Phytoseius plumifer (Canestrini and Fanzago). Additionally the side effects of two acaricides, abamectin and fenpyroxymate, on this predator will be discussed.


2022 ◽  
Vol 951 (1) ◽  
pp. 012106
Author(s):  
R Sriwati ◽  
T Chamzurni ◽  
F Razi ◽  
Syaifullah ◽  
Yunita ◽  
...  

Abstract To increase plant resistance from an early age, it is necessary to introduce biological control agents from groups of fungi and bacteria. This study aims to determine the effect of Trichoderma harziaunum and Bacillus thuringiensis Aceh isolates in increasing the superiority of Aceh patchouli plants that are resistant to pests and plant diseases. The study used non-factorial RAL method with cover and uncovered seedling methods. Both series were treated with the same biological control agent, the control without any treatment, the treatment of T. harzianum and B. thuringiensis while the observations were made when the seedling covered was opened. Observations included plant morphological characters, plant growth development and peroxidase enzymes. The results showed that morphologically the original patchouli growing in Lhoong district had similar morphological characters to the Lhokseumawe variety. The application of biological control agents of the T. harzianum and B. thuringiensis groups was more effective in increasing plant growth in the closed seedling treatment compared to the uncovered seedling. T. harzianum gave the best effect at a dose range of 1-1.5 while B. thuringensis showed a better effect at a concentration of 10-15 ml. Both treatments increased the growth of patchouli seedlings as indicated by the better plant height and number of shoots. Furthermore, higher peroxidation enzymes were found in the closed seedling treatment with 1.5 g T harzianum and 15 ml B. thuringiensis. The high peroxidase enzyme as an indicator of the more resistant plants have been induced to pests and diseases. From the screen house experiment, T. harzianum and B. thuringiensis were more efficient in inducing plant growth and disease resistance of local varieties of patchouli using the closed seedling method.


1996 ◽  
Vol 6 (3) ◽  
pp. 233-237 ◽  
Author(s):  
V. Bruce Steward ◽  
Janet L. Kintz ◽  
Tracy A. Horner

Biological control agents were ordered from three U.S. suppliers three times during 1994 and were evaluated (total of nine orders evaluated). Biological control agents evaluated were a whitefly parasitoid [Encarsia formosa Gahan (Hymenoptera: Aphelinidae)], mealybug destroyer [Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae)], insidious flower bug [Orius insidiosus (Say) (Heteroptera: Anthocoridae)], and a predatory mite [Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae)]. Arrival time, packaging methods, cost, quality, and quantity for each shipment were recorded. Six of the nine orders evaluated did not arrive by the date promised by the supplier. Most biological control agents were shipped in styrofoam boxes; the method by which they were packed in the box differed among suppliers. The cost of each biological control agent order ranged from $260.64 to $327.03 and varied with the same supplier. The number of viable E. formosa emerging ranged from 745 to 4901; two of the nine orders met the quota of 2000 live wasps. The total number of live C. montrouzieri received ranged from 234 to 288; five orders contained the expected number of 250 live beetles. For the expected order of 1000 O. insidiosus, quantities of live insects ranged from 423 to 1333; three orders contained at least the expected amount. The number of live P. persimilis ranged from 199 to 4447. Three orders contained the targeted amount of 2000. Our findings indicate that there are problems with the quantity of viable biological control agents being shipped. To build consumer confidence in the potential effectiveness of biological control, suppliers and producers of biological control agents must address ways to ensure that the consumer receives a high-quality product, in quantity and viability.


Sign in / Sign up

Export Citation Format

Share Document