scholarly journals Evaluating the efficacy of Trichoderma harzianum and Bacillus thuringiensis on induce the plant growth and resistance of local variety patchouli under covered and uncovered seedlings methods

2022 ◽  
Vol 951 (1) ◽  
pp. 012106
Author(s):  
R Sriwati ◽  
T Chamzurni ◽  
F Razi ◽  
Syaifullah ◽  
Yunita ◽  
...  

Abstract To increase plant resistance from an early age, it is necessary to introduce biological control agents from groups of fungi and bacteria. This study aims to determine the effect of Trichoderma harziaunum and Bacillus thuringiensis Aceh isolates in increasing the superiority of Aceh patchouli plants that are resistant to pests and plant diseases. The study used non-factorial RAL method with cover and uncovered seedling methods. Both series were treated with the same biological control agent, the control without any treatment, the treatment of T. harzianum and B. thuringiensis while the observations were made when the seedling covered was opened. Observations included plant morphological characters, plant growth development and peroxidase enzymes. The results showed that morphologically the original patchouli growing in Lhoong district had similar morphological characters to the Lhokseumawe variety. The application of biological control agents of the T. harzianum and B. thuringiensis groups was more effective in increasing plant growth in the closed seedling treatment compared to the uncovered seedling. T. harzianum gave the best effect at a dose range of 1-1.5 while B. thuringensis showed a better effect at a concentration of 10-15 ml. Both treatments increased the growth of patchouli seedlings as indicated by the better plant height and number of shoots. Furthermore, higher peroxidation enzymes were found in the closed seedling treatment with 1.5 g T harzianum and 15 ml B. thuringiensis. The high peroxidase enzyme as an indicator of the more resistant plants have been induced to pests and diseases. From the screen house experiment, T. harzianum and B. thuringiensis were more efficient in inducing plant growth and disease resistance of local varieties of patchouli using the closed seedling method.

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1746
Author(s):  
Alejandro Moreno-Gavíra ◽  
Victoria Huertas ◽  
Fernando Diánez ◽  
Brenda Sánchez-Montesinos ◽  
Mila Santos

Incorporating beneficial microorganisms in crop production is the most promising strategy for maintaining agricultural productivity and reducing the use of inorganic fertilizers, herbicides, and pesticides. Numerous microorganisms have been described in the literature as biological control agents for pests and diseases, although some have not yet been commercialised due to their lack of viability or efficacy in different crops. Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action. In addition, species of this genus have recently been described as biostimulants of plant growth and crop yield. This review includes all the information on the genus Paecilomyces as a biological control agent for pests and diseases. Its growth rate and high spore production rate in numerous substrates ensures the production of viable, affordable, and efficient commercial formulations for agricultural use.


2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


Weed Science ◽  
1986 ◽  
Vol 34 (S1) ◽  
pp. 33-34 ◽  
Author(s):  
Paul E. Parker

The use of nematodes as biological control agents has been met with skepticism, partly due to the newness of the approach and also to the potential difficulties of using a parasitic worm as a control organism. Most of the attention directed towards nematodes as biological control agents has been focused on several species that act as insect parasites. Considerable headway has been achieved with several of these parasites, especially with those parasitic on wood-boring insect larvae. The insect gallery of wood-boring larvae provides an optimum microclimate for the nematode to survive and seek out its larval insect host. A system where this strategy has proved successful involves the use of the insect parasitic nematodeNeoaplectana carpocapsaeWeiser as a biological control agent for carpenterworms (Prionoxystus robinaePeck) in fig (Ficus cariaL.) orchards in California (6). Similar systems are being developed both here and abroad with the same nematode or a closely related genus or species. Many of these systems show promise (5).


1991 ◽  
Vol 31 (5) ◽  
pp. 709 ◽  
Author(s):  
SC McKillup ◽  
DG Brown

Waxmoths cause significant damage to stored honeycombs of the Western honeybee Apis mellifera in Australia. A field experiment was designed to evaluate the effectiveness of a commercial formulation (Certan) of the biological control agent Bacillus thuringiensis in preventing this damage.Treatment applied at the manufacturer's recommended rate of 855 units per cm2 of honeycomb almost completely prevented damage, while untreated combs showed an average of 76% damage. The cost and practicality of applying the formulation of B. thuringiensis are discussed, together with the recommendation that new control methods for waxmoths should be researched.


Author(s):  
Judith H. Myers

The movement of humans around the earth has been associated with an amazing redistribution of a variety of organisms to new continents and exotic islands. The natural biodiversity of native communities is threatened by new invasive species, and many of the most serious insect and weed pests are exotics. Classical biological control is one approach to dealing with nonindigenous species. If introduced species that lack natural enemies are competitively superior in exotic habitats, introducing some of their predators (herbivores), diseases, or parasitoids may reduce their population densities. Thus, the introduction of more exotic species may be necessary to reduce the competitive superiority of nonindigenous pests. The intentional introduction of insects as biological control agents provides an experimental arena in which adaptations and interactions among species may be tested. We can use biological control programs to explore such evolutionary questions as: What characteristics make a natural enemy a successful biological control agent? Does coevolution of herbivores and hosts or predators (parasitoids) and prey result in few species of natural enemies having the potential to be successful biological control agents? Do introduced natural enemies make unexpected host range shifts in new environments? Do exotic species lose their defense against specialized natural enemies after living for many generations without them? If coevolution is a common force in nature, we expect biological control interactions to demonstrate a dynamic interplay between hosts and their natural enemies. In this chapter, I consider biological control introductions to be experiments that might yield evidence on how adaptation molds the interactions between species and their natural enemies. I argue that the best biological control agents will be those to which the target hosts have not evolved resistance. Classical biological control is the movement of natural enemies from a native habitat to an exotic habitat where their host has become a pest. This approach to exotic pests has been practiced since the late 1800s, when Albert Koebele explored the native habitat of the cottony cushion scale, Icrya purchasi, in Australia and introduced Vadalia cardinalis beetles (see below) to control the cottony cushion scale on citrus in California. This control has continued to be a success.


Sociobiology ◽  
2017 ◽  
Vol 64 (4) ◽  
pp. 477 ◽  
Author(s):  
Matheus Montefusco Oliveira ◽  
Flávia Batista Gomes ◽  
Alexandre Somavilla ◽  
Cristiane Krug

Wasps of the genus Polistes (Vespidae: Polistinae) are eusocial, considered valuable biological control agents. The objective of this work was to determine the resources collected by Polistes canadensis wasps, evaluate their performance and importance as a natural enemy and possible agent of biological control in the Brazilian Amazon. Between 8 October and 20 November of 2014, 20 evaluations were performed, totalizing 101 hours of observations of the foraging activity of an aggregation out in stage of development post-emergence with approximately 50 adult individuals distributed in 15 colonies. Additionally, observations of the predatory activity of Polistes canadensis on Plutella xylostella on a small organic plantation of kale (Brassica oleracea L. var. acephala DC), were also made. During the evaluations 1742 returns were recorded, 11.72% of them with prey, 3.10% with plant fiber, 16.76% with nectar, 45.17% with water and 23.25% without any visible load. All the preys identified were classified as Lepidoptera, belonging to ten morphospecies. Only one morphospecies was identified as Spodoptera frugiperda, which was the most commonly resource used by the wasps in 37 % in immature feeding. Only returns with nectar had statistically significant difference between the evaluated schedules.  Polistes canadensis wasps did not prey Plutella xylostella caterpillars. The wasp aggregation studied was able to prey an average of 10.2 caterpillars per day, which demonstrates the potential of this species for the biological control of pests in the Amazon region.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Julien Crovadore ◽  
Gautier Calmin ◽  
Romain Chablais ◽  
Bastien Cochard ◽  
Torsten Schulz ◽  
...  

We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis , isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture.


2016 ◽  
Vol 9 (2) ◽  
pp. 78-88 ◽  
Author(s):  
A. Mohammadi-Khoramabadi ◽  
H. Alipanah ◽  
S. Belokobylskij ◽  
M.R. Nematollahi

Summary Prosopis farcta (Fabaceae) is a native and common perennial weed plant in Iran. In search of environmental-friendly control methods against P. farcta, we discovered the seed feeder moth Nephopterygia austeritella (Lepidoptera; Pyralidae) in central Iran and studied its bioecology for the first time from 2008 through 2009. Infestation pattern, larval feeding behaviour, developmental period, seasonal occurrence and the adverse impact of the moth on the reproductive organs of P. farcta were investigated. Diagnostic morphological characters of the fifth larval instar of N. austeritella are provided. Two gregarious ectoparasitoids were reared and identified as Apanteles subcamilla and Phanerotoma leucobasis (Hymenoptera: Braconidae). Mortality rates of the larvae were 3.03 and 13.44% in 2008 and 2009, respectively. Larvae destroyed 29.6-38.4% of the pods of their host plants. The potential of N. austeritella as an efficient biological control agent in IPM programs against P. farcta is discussed.


Sign in / Sign up

Export Citation Format

Share Document