scholarly journals Evaluation of Biological Control Agent Shipments from Three United States Suppliers

1996 ◽  
Vol 6 (3) ◽  
pp. 233-237 ◽  
Author(s):  
V. Bruce Steward ◽  
Janet L. Kintz ◽  
Tracy A. Horner

Biological control agents were ordered from three U.S. suppliers three times during 1994 and were evaluated (total of nine orders evaluated). Biological control agents evaluated were a whitefly parasitoid [Encarsia formosa Gahan (Hymenoptera: Aphelinidae)], mealybug destroyer [Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae)], insidious flower bug [Orius insidiosus (Say) (Heteroptera: Anthocoridae)], and a predatory mite [Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae)]. Arrival time, packaging methods, cost, quality, and quantity for each shipment were recorded. Six of the nine orders evaluated did not arrive by the date promised by the supplier. Most biological control agents were shipped in styrofoam boxes; the method by which they were packed in the box differed among suppliers. The cost of each biological control agent order ranged from $260.64 to $327.03 and varied with the same supplier. The number of viable E. formosa emerging ranged from 745 to 4901; two of the nine orders met the quota of 2000 live wasps. The total number of live C. montrouzieri received ranged from 234 to 288; five orders contained the expected number of 250 live beetles. For the expected order of 1000 O. insidiosus, quantities of live insects ranged from 423 to 1333; three orders contained at least the expected amount. The number of live P. persimilis ranged from 199 to 4447. Three orders contained the targeted amount of 2000. Our findings indicate that there are problems with the quantity of viable biological control agents being shipped. To build consumer confidence in the potential effectiveness of biological control, suppliers and producers of biological control agents must address ways to ensure that the consumer receives a high-quality product, in quantity and viability.

2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


Weed Science ◽  
1986 ◽  
Vol 34 (S1) ◽  
pp. 33-34 ◽  
Author(s):  
Paul E. Parker

The use of nematodes as biological control agents has been met with skepticism, partly due to the newness of the approach and also to the potential difficulties of using a parasitic worm as a control organism. Most of the attention directed towards nematodes as biological control agents has been focused on several species that act as insect parasites. Considerable headway has been achieved with several of these parasites, especially with those parasitic on wood-boring insect larvae. The insect gallery of wood-boring larvae provides an optimum microclimate for the nematode to survive and seek out its larval insect host. A system where this strategy has proved successful involves the use of the insect parasitic nematodeNeoaplectana carpocapsaeWeiser as a biological control agent for carpenterworms (Prionoxystus robinaePeck) in fig (Ficus cariaL.) orchards in California (6). Similar systems are being developed both here and abroad with the same nematode or a closely related genus or species. Many of these systems show promise (5).


2019 ◽  
Vol 12 (5) ◽  
pp. 989-1000 ◽  
Author(s):  
Hao‐Sen Li ◽  
Gerald Heckel ◽  
Yu‐Hao Huang ◽  
Wei‐Jian Fan ◽  
Adam Ślipiński ◽  
...  

2021 ◽  
Author(s):  
Hao-Sen Li ◽  
Yu-Hao Huang ◽  
Mei-Lan Chen ◽  
Zhan Ren ◽  
Bo-Yuan Qiu ◽  
...  

Abstract Background The ladybird beetle Cryptolaemus montrouzieri Mulsant (Coleoptera, Coccinellidae) is used worldwide as a biological control agent. It is a predator of various mealybug pests, but it also feeds on alternative prey and can be reared on artificial diets. Relatively little is known about the underlying genetic adaptations of its feeding habits. Results We report the first high-quality genome sequence for C. montrouzieri. We found that the gene families encoding chemosensors and digestive and detoxifying enzymes among others were significantly expanded or contracted in this ladybird in comparison to other beetles. Diet-specific larval transcriptome profiling demonstrated that differentially expressed genes on unnatural diet as compared to natural prey were enriched in pathways of nutrient metabolism, indicating that the lower performance on the tested diets was caused by nutritional deficiencies. Remarkably, the C. montrouzieri genome also showed a significant expansion in an immune effector gene family. Some of the immune effector genes were dramatically downregulated when larvae were fed unnatural diets. Conclusion We suggest that the evolution of genes related to chemosensing, digestion, and detoxification but also immunity might be associated with diet adaptation of an insect predator. These findings help explain why this predatory ladybird has become a successful biological control agent and will enable the optimization of its mass rearing and use in biological control programs.


1991 ◽  
Vol 31 (5) ◽  
pp. 709 ◽  
Author(s):  
SC McKillup ◽  
DG Brown

Waxmoths cause significant damage to stored honeycombs of the Western honeybee Apis mellifera in Australia. A field experiment was designed to evaluate the effectiveness of a commercial formulation (Certan) of the biological control agent Bacillus thuringiensis in preventing this damage.Treatment applied at the manufacturer's recommended rate of 855 units per cm2 of honeycomb almost completely prevented damage, while untreated combs showed an average of 76% damage. The cost and practicality of applying the formulation of B. thuringiensis are discussed, together with the recommendation that new control methods for waxmoths should be researched.


Author(s):  
Judith H. Myers

The movement of humans around the earth has been associated with an amazing redistribution of a variety of organisms to new continents and exotic islands. The natural biodiversity of native communities is threatened by new invasive species, and many of the most serious insect and weed pests are exotics. Classical biological control is one approach to dealing with nonindigenous species. If introduced species that lack natural enemies are competitively superior in exotic habitats, introducing some of their predators (herbivores), diseases, or parasitoids may reduce their population densities. Thus, the introduction of more exotic species may be necessary to reduce the competitive superiority of nonindigenous pests. The intentional introduction of insects as biological control agents provides an experimental arena in which adaptations and interactions among species may be tested. We can use biological control programs to explore such evolutionary questions as: What characteristics make a natural enemy a successful biological control agent? Does coevolution of herbivores and hosts or predators (parasitoids) and prey result in few species of natural enemies having the potential to be successful biological control agents? Do introduced natural enemies make unexpected host range shifts in new environments? Do exotic species lose their defense against specialized natural enemies after living for many generations without them? If coevolution is a common force in nature, we expect biological control interactions to demonstrate a dynamic interplay between hosts and their natural enemies. In this chapter, I consider biological control introductions to be experiments that might yield evidence on how adaptation molds the interactions between species and their natural enemies. I argue that the best biological control agents will be those to which the target hosts have not evolved resistance. Classical biological control is the movement of natural enemies from a native habitat to an exotic habitat where their host has become a pest. This approach to exotic pests has been practiced since the late 1800s, when Albert Koebele explored the native habitat of the cottony cushion scale, Icrya purchasi, in Australia and introduced Vadalia cardinalis beetles (see below) to control the cottony cushion scale on citrus in California. This control has continued to be a success.


Sociobiology ◽  
2017 ◽  
Vol 64 (4) ◽  
pp. 477 ◽  
Author(s):  
Matheus Montefusco Oliveira ◽  
Flávia Batista Gomes ◽  
Alexandre Somavilla ◽  
Cristiane Krug

Wasps of the genus Polistes (Vespidae: Polistinae) are eusocial, considered valuable biological control agents. The objective of this work was to determine the resources collected by Polistes canadensis wasps, evaluate their performance and importance as a natural enemy and possible agent of biological control in the Brazilian Amazon. Between 8 October and 20 November of 2014, 20 evaluations were performed, totalizing 101 hours of observations of the foraging activity of an aggregation out in stage of development post-emergence with approximately 50 adult individuals distributed in 15 colonies. Additionally, observations of the predatory activity of Polistes canadensis on Plutella xylostella on a small organic plantation of kale (Brassica oleracea L. var. acephala DC), were also made. During the evaluations 1742 returns were recorded, 11.72% of them with prey, 3.10% with plant fiber, 16.76% with nectar, 45.17% with water and 23.25% without any visible load. All the preys identified were classified as Lepidoptera, belonging to ten morphospecies. Only one morphospecies was identified as Spodoptera frugiperda, which was the most commonly resource used by the wasps in 37 % in immature feeding. Only returns with nectar had statistically significant difference between the evaluated schedules.  Polistes canadensis wasps did not prey Plutella xylostella caterpillars. The wasp aggregation studied was able to prey an average of 10.2 caterpillars per day, which demonstrates the potential of this species for the biological control of pests in the Amazon region.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Julien Crovadore ◽  
Gautier Calmin ◽  
Romain Chablais ◽  
Bastien Cochard ◽  
Torsten Schulz ◽  
...  

We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis , isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture.


Sign in / Sign up

Export Citation Format

Share Document