Facilitated Heterogeneous Photodegradation of Dissolved Organic Matter by Particulate Iron

2004 ◽  
Vol 1 (3) ◽  
pp. 197 ◽  
Author(s):  
Julia A. Howitt ◽  
Darren S. Baldwin ◽  
Gavin N. Rees ◽  
Barry T. Hart

Environmental Context. Iron oxides, as suspended minerals or as a colloidal phase, are common in Australian freshwater systems. Freshwater systems are also loaded with carbon-based substances, ‘dissolved organic matter’, but not all is biologically available as food to freshwater organisms. However, photochemical interactions between these iron oxides and dissolved organic matter provide a mechanism for biologically resistant carbon to re-enter the food web. Suspended iron oxides thus need to be considered in carbon cycles in aquatic ecosystems. Abstract. The photochemical degradation of dissolved organic matter (DOM) derived from the leaves of River Red Gum (Eucalyptus camaldulensis) was examined, with a particular focus on the photochemical generation of CO2, consumption of O2, and the effect of particulate iron minerals on these photochemical reactions. Solutions of leaf leachate were irradiated with ultraviolet and visible light in the presence and absence of amorphous iron oxides. Addition of fresh iron oxide was found to increase the rate of photodegradation of the organic matter by up to an order of magnitude compared to the reactions without added iron oxide. The ratio of CO2 produced to O2 consumed was ~1:1 in both the presence and absence of iron oxyhydroxide. The reactivity of the iron oxides was dependent on the preparation method and decreased with increased storage time. These results suggest that photochemical reactions on particle surfaces should be considered when examining carbon transformation in aquatic ecosystems, especially at sites with potential for the production of iron oxyhydroxides.

2008 ◽  
Vol 59 (9) ◽  
pp. 780 ◽  
Author(s):  
Julia A. Howitt ◽  
Darren S. Baldwin ◽  
Gavin N. Rees ◽  
Barry T. Hart

Photochemical degradation of dissolved organic matter (DOM) can influence food webs by altering the availability of carbon to microbial communities, and may be particularly important following periods of high DOM input (e.g. flooding of forested floodplains). Iron oxides can facilitate these reactions, but their influence on subsequent organic products is poorly understood. Degradation experiments with billabong (= oxbow lake) water and river red gum (Eucalyptus camaldulensis) leaf leachate were conducted to assess the importance of these reactions in floodplain systems. Photochemical degradation of DOM in sunlight-irradiated quartz tubes (with and without amorphous iron oxide) was studied using gas chromatography and UV-visible spectroscopy. Photochemical reactions generated gaseous products and small organic acids. Bioavailability of billabong DOM increased following irradiation, whereas that of leaf leachate was not significantly altered. Fluorescence excitation-emission spectra suggested that the humic component of billabong organic matter was particularly susceptible to degradation, and the source of DOM influenced the changes observed. The addition of amorphous iron oxide increased rates of photochemical degradation of leachate and billabong DOM. The importance of photochemical reactions to aquatic systems will depend on the source of the DOM and its starting bioavailability, whereas inputs of freshly formed iron oxides will accelerate the processes.


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18421-18427 ◽  
Author(s):  
Haiming Wu ◽  
Li Lin ◽  
Guangzhu Shen ◽  
Ming Li

The risk of heavy metals to aquatic ecosystems was paid much attention in recent years, however, the knowledge on effects of heavy metals on dissolved organic matter (DOM) released byMicrocystiswas quite poor, especially in eutrophic lakes.


Geoderma ◽  
2016 ◽  
Vol 261 ◽  
pp. 169-177 ◽  
Author(s):  
Marcella Sodano ◽  
Daniel Said-Pullicino ◽  
Antonio F. Fiori ◽  
Marcella Catoni ◽  
Maria Martin ◽  
...  

1993 ◽  
Vol 12 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Valerie A. Hodge ◽  
Gary T. Fan ◽  
Keith R. Solomon ◽  
Narinder K. Kaushik ◽  
Gary G. Leppard ◽  
...  

Fisheries ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 16-19
Author(s):  
Anatoliy Sadchikov ◽  
Sergei Ostroumov

Dissolved organic matter (DOM) is one of the important parameters of water quality in aquatic ecosystems. In the experiments, phyto- and bacterioplankton actively consumed 14C-labeled chlorella hydrolyzate. Removal (by filtration) of cyanobacteria from the aquatic environment leads to an increase in the rate of DOM consumption by bacteria. This indicates the possibility of a negative effect of cyanobacterial metabolites on the physiological processes of bacterioplankton.


2015 ◽  
Vol 12 (13) ◽  
pp. 10719-10815 ◽  
Author(s):  
J. E. Vonk ◽  
S. E. Tank ◽  
W. B. Bowden ◽  
I. Laurion ◽  
W. F. Vincent ◽  
...  

Abstract. The Arctic is a water-rich region, with freshwater systems covering 16 % of the northern permafrost landscape. The thawing of this permafrost creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic and lotic systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas, vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying variables determine the degree to which permafrost thaw manifests as thermokarst, whether thermokarst leads to slumping or the formation of thermokarst lakes, and the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying variables determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted systems is also likely to change, with thaw-impacted lakes and streams having unique microbiological communities, and showing differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter and nutrient delivery. The degree to which thaw enables the delivery of dissolved vs. particulate organic matter, coupled with the composition of that organic matter and the morphology and stratification characteristics of recipient systems will play an important role in determining the balance between the release of organic matter as greenhouse gases (CO2 and CH4), its burial in sediments, and its loss downstream. The magnitude of thaw impacts on northern aquatic ecosystems is increasing, as is the prevalence of thaw-impacted lakes and streams. There is therefore an urgent need to address the key gaps in understanding in order to predict the full effects of permafrost thaw on aquatic ecosystems throughout the Arctic, and their consequential feedbacks to climate.


1979 ◽  
Vol 59 (2) ◽  
pp. 191-202 ◽  
Author(s):  
S. CHOMCHAN ◽  
R. G. LEGER ◽  
G. J. F. MILLETTE

A new spectrophotometric interpretation of the influence of organic matter, iron oxides and moisture on the soil color of the Ste-Sophie sand and the Ste-Rosalie clay is reported. The method is based on calculation of the area ratio of the reflected (area under the reflectance curve) against the absorbed (area over the reflectance curve). The higher the ratio the lighter is the soil. After treatment to remove organic matter and iron oxide coatings, both soils presented colors significantly lighter than those observed in untreated soils. Organic matter and amorphous iron oxide contributed for 78% and 64% of the color in the Ste-Sophie sand and in the Ste-Rosalie clay, respectively. Moisture tends to mask the effects of organic matter and iron oxides on soil color. Air-dried soils when compared to moistened soils were lighter in color.


Sign in / Sign up

Export Citation Format

Share Document