lake morphology
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Lara Hughes-Allen ◽  
Frédéric Bouchard ◽  
Christine Hatté ◽  
Hanno Meyer ◽  
Lyudmila A. Pestryakova ◽  
...  

A multi-proxy paleolimnological analysis of a sediment core sequence from Lake Malaya Chabyda in Central Yakutia (Eastern Siberia, Russia) was conducted to investigate changes in lake processes, including lake development, sediment and organic carbon accumulation, and changes in primary productivity, within the context of Late Pleistocene and Holocene climate change. Age-depth modeling with 14C indicates that the maximum age of the sediment core is ∼14 cal kBP. Three distinct sedimentary units were identified within the sediment core. Sedimentological and biogeochemical properties in the deepest section of the core (663–584 cm; 14.1–12.3 cal kBP) suggests a lake environment mostly influenced by terrestrial vegetation, where organic carbon accumulation might have been relatively low (average ∼100 g OC m−2 a−1), although much higher than the global modern average. The middle section of the core (584–376 cm; 12.3–9.0 cal kBP) is characterized by higher primary productivity in the lake, much higher sedimentation, and a remarkable increase in OC delivery (average ∼300 g OC m−2 a−1). Conditions in the upper section of the core (<376 cm; < 9.0 cal kBP) suggest high primary productivity in the lake and high OC accumulation rates (average ∼200 g OC m−2 a−1), with stable environmental conditions. The transition from organic-poor and mostly terrestrial vegetation inputs (TOC/TNatomic ratios ∼20) to conditions dominated by aquatic primary productivity (TOC/TNatomic ratios <15) occurs at around 12.3 cal kBP. This resulted in an increase in the sedimentation rate of OC within the lake, illustrated by higher sedimentation rates and very high total OC concentrations (>30%) measured in the upper section of the core. Compact lake morphology and high sedimentation rates likely resulted in this lake acting as a significant OC sink since the Pleistocene-Holocene transition. Sediment accumulation rates declined after ∼8 cal k BP, however total OC concentrations were still notably high. TOC/TNatomic and isotopic data (δ13C) confirm the transition from terrestrial-influenced to aquatic-dominated conditions during the Early Holocene. Since the mid-Holocene, there was likely higher photosynthetic uptake of CO2 by algae, as suggested by heavier (isotopically enriched) δ13C values (>−25‰).


Author(s):  
Mark Jason Lara ◽  
Yaping Chen ◽  
Benjamin M. Jones

Abstract Lakes represent as much as ~25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e., 1975-2019) across 32,690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning ~388,968 km2. Drivers of lake drainage were determined with boosted regression tree (BRT) models, using both static (e.g., lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g., temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10-16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ~37% decade-1 from 1975-1979 (102 to 273 lakes draining year-1) to 2010-2014 (3 to 8 lakes draining year-1). However this 40 year negative trend was reversed during the most recent time-period (2015-2019), with observations of catastrophic drainage among the highest on record (i.e., 100 to 250 lakes draining year-1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2 adj=0.42, CV=0.35, p<0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2 adj=0.75, CV=0.67, p<0.0001). Models forecast a continued decline in lake area across northern Alaska by 15 to 21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt “catastrophic” drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.


2021 ◽  
Vol 15 (1) ◽  
pp. 199-214
Author(s):  
Yanbin Lei ◽  
Tandong Yao ◽  
Lide Tian ◽  
Yongwei Sheng ◽  
Jingjuan Liao ◽  
...  

Abstract. The lower parts of two glaciers in the Aru range on the western Tibetan Plateau (TP) collapsed on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The giant ice avalanches, with a total volume of 150 × 106 m3, had almost melted by September 2019 (about 30 % of the second ice avalanche remained). The impact of these extreme disasters on downstream lakes has not been investigated yet. Based on in situ observation, bathymetry survey and satellite data, we explore the impact of the ice avalanches on the two downstream lakes (i.e., Aru Co and Memar Co) in terms of lake morphology, water level and water temperature in the subsequent 4 years (2016–2019). After the first glacier collapse, the ice avalanche slid into Aru Co along with a large amount of debris, which generated great impact waves in Aru Co and significantly modified the lake's shoreline and underwater topography. An ice volume of at least 7.1 × 106 m3 was discharged into Aru Co, spread over the lake surface and considerably lowered its surface temperature by 2–4 ∘C in the first 2 weeks after the first glacier collapse. Due to the large amount of meltwater input, Memar Co exhibited more rapid expansion after the glacier collapses (2016–2019) than before (2003–2014), in particular during the warm season. The melting of ice avalanches was found to contribute to about 23 % of the increase in lake storage between 2016 and 2019. Our results indicate that the Aru glacier collapses had both short-term and long-term impacts on the downstream lakes and provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Denis Furstenau Plec ◽  
Talita Fernanda das Graças Silva ◽  
Brigitte Vinçon-Leite ◽  
Nilo Nascimento

ABSTRACT Urban lakes and reservoirs provide important ecosystem services. However, their water quality is being affected by anthropogenic pressures. The thermal regime is a strong driver of the vertical transport of nutrients, phytoplankton and oxygen. Thermal stratification can modify biogeochemical processes. In this paper, a three-dimensional hydrodynamic model was implemented and validated with high-frequency measurement of water temperature. The simulation results were in agreement with the measurements. For all simulation period, the model performance was evaluated based on hourly values, presenting a maximum RMSE of 0.65 ºC and Relative Error of 2.08%. The results show that high-frequency measurement associated with a three-dimensional model could help to understand and identify the reasons for the changes in the thermal condition of a shallow urban lake. The impact of the stream inflow on the temperature was highlighted, showing that during higher discharge events, when the river temperature is colder than the lake water, it flows into the lake deeper layers. The inflow water sank to the deeper layers where the lake morphology changes. The model showed an impact along the entire lake, showing the importance of monitoring the inflow water temperature. This modelling tool could be further used to study specific patterns of reservoir hydrodynamics.


2020 ◽  
Vol 39 (03) ◽  
pp. 795-802
Author(s):  
William SEVERI

Lake morphology is closely related to the geomorphological process responsible for its origin, and influences the dynamics of most physical, chemical and biological properties of lacustrine environments. Different methodologies and highly accurate equipment have greatly improved the technological capacity for bathymetric mapping in the last decade, but their use has been applied to a limited number of environments in Brazil, owing to their high cost and lack of trained personnel. In the present study, an accessible and low-cost approach was used to characterize the morphometrics of Mata do Amparo Dam, a man-made lake in Itamaracá Island, Pernambuco State, northeastern Brazil. Lake bathymetry with a portable echosounder and GPS was conducted in 372 points, and additional 138 points of lake perimeter were digitalized from a satellite image and later interpolated for generation of a bathymetry chart, 3D views and estimation of volume. The reservoir has a surface area of 0.042 km2, a maximum depth of 6.2 m and an estimated volume of 0.11 x 106 m3. The methodology used provided an acceptable estimate of morphometric parameters, and a physical background for future limnological studies on the reservoir. Keywords: bathymetry, morphology, volume


2020 ◽  
Vol 51 (4) ◽  
pp. 815-832
Author(s):  
Hua Wang ◽  
John Paul Kaisam ◽  
Dongfang Liang ◽  
Yanqing Deng ◽  
Yuhan Shen

Abstract Poyang Lake, the largest freshwater lake in China, is distinguished by complicated suspended sediment (SS) dynamics. Apart from lake currents, wind is an important form of natural disturbance in driving SS transport. Combining field data, laboratory experiments, and numerical simulations, we gained valuable insight into wind impacts on SS dynamics in Poyang Lake. (1) Lake current patterns exert great influence on the level of wind impacts. Due to reduced sediment carrying capacity, SS under weak current suffers from stronger wind influence than under strong currents. (2) Wind speed determines the degree of wind impact, not only affecting horizontal SS transport, but also regulating vertical dynamics. Winds exceeding critical intensity can enhance horizontal transport through both surface drift and Stokes drift at different water depths, triggering sediment suspension to feed the loads in overlying water. (3) Wind impact is influenced by lake morphology. The broad water surface in the central lake permits formation of continuous waves, leading to the largest SS fluctuation, from −10.05 mg·L−1 to +20.17 mg·L−1, while average variation in the south and north part of the lake is only −6.59 mg·L−1 to +10.36 mg·L−1. (4) SS in four reserves are characterized by notable wind impact, while in the other two reserves SS show no obvious departure from values without wind.


2020 ◽  
Author(s):  
Yanbin Lei ◽  
Tandong Yao ◽  
Lide Tian ◽  
Yongwei Sheng ◽  
Jingjuan Liao ◽  
...  

Abstract. Two giant glaciers at the Aru range, western Tibetan Plateau, collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The ice avalanches, with a total volume of 150 × 106 m3, had almost melted by September 2019. Based on in-situ observation, bathymetry survey and satellite data, here we show the impacts of the two glacier collapses on the downstream lakes, the outflow Aru Co and the terminal Memar Co, in terms of lake morphology, water level and water temperature in the subsequent four years (2016–2019). After the first glacier collapse, the ice avalanche slid into Aru Co along with a large amount of debris, which significantly modified the lake’s shoreline and bathymetry. Lake surface temperature (LST) at Aru Co and Memar Co exhibited a significant decrease of 2–4 oC in the first 1–2 weeks after the first glacier collapse due to the intruding ice into Aru Co and its melting. Memar Co significantly deepened by 12.5 m between 2000 and 2018, with accelerated lake level increase after the glacier collapses. Memar Co expanded rapidly at a rate of 0.80 m/yr between 2016 and 2019, which is about 30 % higher than the average rising rate between 2003 and 2014. The meltwater from ice avalanches was found to contribute to about 26.4 % of the increase in lake storage between 2016 and 2019. This study implies that the Aru glacier collapses had long-term and dramatic impacts on the downstream lakes.


2020 ◽  
Author(s):  
Fabrizio Troilo ◽  
Valerio Segor ◽  
Paolo Perret ◽  
Manuel Bertholin ◽  
Luca Mondardini ◽  
...  

&lt;p&gt;Miage Glacier Lake is a glacial marginal lake that forms on the right snout of Miage Glacier, located in the Val Veny Valley (Aosta Valley &amp;#8211; Italy). The lake has been experiencing seasonal drainages at least since the 1930&amp;#8217;s and 15 events have been documented from 1930 to 1990. The lake position has been almost unvaried since the first existing maps of late 1700, but lake morphology experienced major changes after the drainage event of September 2004, after which the water level could not reach again a sufficient height to fill the 3 depressions that used to form a bigger lake until 2003 (36.000 m&lt;sup&gt;2&lt;/sup&gt;). The lake having decreased its volume and surface, it did not seem by that time that GLOF from Miage Lake could cause any risk downstream (Deline et Al. 2004), but recent observation of Sentinel 2B satellite images &amp;#160;led to the individuation of unusual lake expansion towards its north shore. Thus, an UAV survey was performed to assess the actual lake area in July 2019, and the integration of satellite images and UAV surveys demonstrated a consistent lake area expansion since 2015. Moreover an emptying occurred in late August 2019 so that another UAV survey could be performed, and water volume estimation could be performed by means of DEM differencing. An important water volume was individuated, reaching 196.000 m&lt;sup&gt;3&lt;/sup&gt; and an estimation of maximum subglacial GLOF debit has been performed. Global evolution trend of the glacier mass has been evaluated by analyzing different airborne Lidar surveys (1991-2008). A cumulated geodetic mass balance could be thus inferred and found good matching with remote sensed analysis (2003-2012) performed by means of stereo satellite imagery by Berthier et Al. in 2014. Average surface lowering of the glacier surface could be analyzed and average values of -1.12 m/yr could be observed around lake Miage. The strong elevation loss of Miage Glacier lower snout is probably the cause of the lowering of the piezometric level in intra-glacial water limiting maximum altitude that water level can reach in the lake, so that the bigger basin of 2004 cannot be filled anymore. Moreover, an analysis of recent GLOFs of Miage Lake gave an insight about the possible dynamics of lake subglacial drainage, suggesting the existence of 2 different mechanisms of emptying as some events occur with lower water debits, earlier in the season, and other events occur later in the summer season with major water debits. Similar GLOF behavior has been described at Plaine Morte Glacier Lake in the Canton of Bern-Switzerland (Fahrni 2018). Field surveys of 2018 showed very likely evidence of hydrostatic uplift of the ice dam, so multi temporal UAV surveys and GNSS field surveys are planned for 2020 to possibly highlight evidences of hydrostatic uplift of the glacier prior to GLOFs.&lt;/p&gt;


2020 ◽  
Vol 51 (3) ◽  
pp. 381-391 ◽  
Author(s):  
Lars Bengtsson ◽  
Osama Ali-Maher

Abstract The consumption of oxygen in ice-covered lakes is analyzed and related to biological oxygen demand and sediment oxygen demand. An approach for computing dissolved oxygen concentration is suggested assuming horizontally mixed waters and negligable vertical dispersion. It is found that the depletion of dissolved oxygen is mainly due to the transfer of oxygen at the water/sediment interface. The morphology of a lake is very important for how fast the dissolved oxygen concentration is reduced during winter.


Sign in / Sign up

Export Citation Format

Share Document