On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence dorée disease

2007 ◽  
Vol 34 (8) ◽  
pp. 750 ◽  
Author(s):  
Rita Musetti ◽  
Rosita Marabottini ◽  
Maurizio Badiani ◽  
Marta Martini ◽  
Luigi Sanità di Toppi ◽  
...  

In the present work, we compared hydrogen peroxide (H2O2) localisation and the activities/contents of antioxidant enzymes and metabolites in the leaf tissues of grapevine (Vitis vinifera L. cv. Prosecco) plants showing different sanitary status, namely diseased by Flavescence dorée, healthy or recovered. Polymerase chain reaction analysis revealed that the pathogen associated with Flavescence dorée (proposed as ‘Candidatus Phytoplasma vitis’) was detected in the leaf tissues of symptomatic plants, but was not observed in either the healthy or recovered plants. Hydrogen peroxide accumulated in the phloem plasmalemma of recovered grapevine leaves, but was not detected in either healthy or diseased material. When compared to diseased or healthy plants, recovered plants had distinctly lower extractable levels of catalase and ascorbate peroxidase, two enzymes primarily involved in the scavenging of excess H2O2 generated in different cell compartments. Among healthy, diseased and recovered leaves there was no significant difference in the amount of 2-thiobarbituric acid-reactive substances, which are assumed to reflect the extent of peroxidative breakdown of membrane lipids. Therefore, it is suggested that recovery from Flavescence dorée disease in grapevine might be associated with a long-term, sustained and tissue-specific accumulation of H2O2 in leaves, which reduces numbers or prevents further infection by Flavescence dorée phytoplasma. Recovered grapevine plants might be able to achieve such H2O2 accumulation through a selective and presumably stable downregulation of enzymatic H2O2 scavengers, without altering the levels of other antioxidant systems and without incurring an increased oxidative risk.

2019 ◽  
Vol 156 (3) ◽  
pp. 987-991
Author(s):  
Anikó Mátai ◽  
Péter Teszlák ◽  
Gábor Jakab

AbstractInvestigation of diseases caused by phytoplasmas, a group of cell-wall-less gram-positive bacteria has received significant attention in plant pathology. Grapevine is a host of two, genetically distinct phytoplasmas: Line Flavescence dorée (FD) phytoplasma associated to ‘flavescence dorée’ and ‘Candidatus Phytoplasma solani’ responsible for ‘bois noir’ (BN) disease. In the current study, we focused on BN diseased grapevines (Vitis vinifera L. cv. ‘Kékfrankos’), measured their photosynthetic performance and leaf hydrogen peroxide (H2O2) concentration. The latter is generally considered as a key molecule in the process of ‘recovery’ which is a spontaneous and unpredictable long-term remission of disease symptoms. This phenomenon also occurred during the time of our experiment. Infection resulted in reduced gas exchange performance and maximum quantum efficiency of PSII with an increased regulated non-photochemical quenching of PSII and H2O2 concentration. Changes in gas exchange seem to be a systemic response, while reduced photochemistry is a local response to ‘Ca. P. solani’ infection. H2O2 accumulation in BN phytoplasma infected plants, unlike in FD disease, was found to be a typical response to the appearance of a biotic stressor.


2020 ◽  
Vol 11 ◽  
Author(s):  
António Teixeira ◽  
Viviana Martins ◽  
Sarah Frusciante ◽  
Telmo Cruz ◽  
Henrique Noronha ◽  
...  

Genome ◽  
2004 ◽  
Vol 47 (3) ◽  
pp. 579-589 ◽  
Author(s):  
S Hocquigny ◽  
F Pelsy ◽  
V Dumas ◽  
S Kindt ◽  
M-C Heloir ◽  
...  

Vitis vinifera 'Pinot' clones were analysed at 50 microsatellite loci to assess intravarietal genetic diversity. When analysing leaf tissue DNAs, polymorphism mainly resulted from the appearance of a third allele when two were expected for heterozygous loci in a diploid species. The sequencing of the three microsatellite alleles at two loci has confirmed their simultaneous presence in the leaf tissues. A hypothesis explaining the triallelic profiles at a locus is the presence of a periclinal chimera meristem structure, in which genetically different cell layers coexist. The periclinal chimeric state of two Vitis vinifera 'Pinot gris' clones was confirmed by splitting and analysing the genotypes resulting from L1 and L2 cell layers in progeny derived from self-fertilization, in root tissues, and in plants regenerated from somatic embryogenesis. Prevalence of chimerism in polymorphic clones observed in a collection of 145 accessions belonging to 'Pinot gris', 'Pinot noir', Pinot blanc', 'Pinot meunier', and 'Pinot moure' cultivars was demonstrated. The accumulation of somatic mutations and cell layer rearrangements allowed us to deduce the relationships between the various genotypes and to open a way for understanding the diversification process and the phylogeny in the 'Pinot' group.Key words: microsatellite, diversity, somatic mutation, chimerism, Vitis vinifera L., 'Pinot'.


2020 ◽  
Vol 21 (12) ◽  
pp. 4485
Author(s):  
Giulia Castorina ◽  
Flaminia Grassi ◽  
Gabriella Consonni ◽  
Sara Vitalini ◽  
Roberto Oberti ◽  
...  

Upon pathogen attack, plants very quickly undergo rather complex physico-chemical changes, such as the production of new chemicals or alterations in membrane and cell wall properties, to reduce disease damages. An underestimated threat is represented by root parasitic nematodes. In Vitis vinifera L., the nematode Xiphinema index is the unique vector of Grapevine fanleaf virus, responsible for fanleaf degeneration, one of the most widespread and economically damaging diseases worldwide. The aim of this study was to investigate changes in the emission of biogenic volatile organic compounds (BVOCs) in grapevines attacked by X. index. BVOCs play a role in plant defensive mechanisms and are synthetized in response to biotic damages. In our study, the BVOC profile was altered by the nematode feeding process. We found a decrease in β-ocimene and limonene monoterpene emissions, as well as an increase in α-farnesene and α-bergamotene sesquiterpene emissions in nematode-treated plants. Moreover, we evaluated the PR1 gene expression. The transcript level of PR1 gene was higher in the nematode-wounded roots, while in the leaf tissues it showed a lower expression compared to control grapevines.


2012 ◽  
Vol 77 ◽  
pp. 89-98 ◽  
Author(s):  
Mariana Gil ◽  
Mariela Pontin ◽  
Federico Berli ◽  
Rubén Bottini ◽  
Patricia Piccoli

2016 ◽  
Vol 44 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Evangelia CHORTI ◽  
Maria KYRALEOU ◽  
Stamatina KALLITHRAKA ◽  
Manolis PAVLIDIS ◽  
Stefanos KOUNDOURAS ◽  
...  

Vitis vinifera L. cv. ‘Agiorgitiko’ is one of the most important red grape varieties of Greece, cultivated almost exclusively in the region of Nemea in north-eastern Peloponnese. This work aimed to study the influence of some commonly applied viticultural practices on the polyphenolic composition of ‘Agiorgitiko’. Leaf removal at veraison, irrigation, and a combination of both, were applied and the phenolic content of the grapes and of the produced wines was compared. The results showed that leaf removal decreased berry size, enhanced total anthocyanin, total phenol and malvidin 3-O-monoglucoside accumulation in skins and increased the amount of extractable anthocyanins in the juice. The combination of irrigation and leaf removal caused a significant increase in total phenols in the skin and in the amount of extractable anthocyanins in juice. As far as the produced wines were concerned, color intensity, tannin content and total polyphenols were increased due to leaf removal. Both irrigation and leaf removal resulted in wines with the highest concentration of malvidin 3-O-monoglucoside, although neither practice resulted in any significant difference in anthocyanin concentration of the wines. Vines where only irrigation was applied produced berries with reduced extractable anthocyanins, increased seed total phenols and lower wine total tannins. The study showed that increasing cluster sun exposure of ‘Agiorgitiko’ vines may be, overall, beneficial to the quality of the produced wine.


Sign in / Sign up

Export Citation Format

Share Document