Pest and disease abundance and dynamics in wheat and oilseed rape as affected by elevated atmospheric CO2 concentrations

2013 ◽  
Vol 40 (2) ◽  
pp. 125 ◽  
Author(s):  
Viktoriya Oehme ◽  
Petra Högy ◽  
Jürgen Franzaring ◽  
Claus P. W. Zebitz ◽  
Andreas Fangmeier

Future atmospheric CO2 concentrations are predicted to increase, and directly affect host plant phenology, which, in turn, is assumed to mediate the performance of herbivorous insects indirectly as well as the abundance and epidemiology of plant diseases. In a 4-year field experiment, spring wheat (Triticum aestivum L. cv. Triso) and spring oilseed rape (Brassica napus L. cv. Campino) were grown using a mini- free-air CO2 enrichment (FACE) system, which consisted of a control (CON), an ambient treatment (AMB) and FACE treatments. The CON and AMB treatments did not receive additional CO2, whereas the FACE plots were moderately elevated by 150 μL L–1 CO2. The impact of elevated CO2 was examined with regard to plant phenology, biomass, leaf nitrogen and carbon, abundance of insect pest species and their relative population growth by either direct counts or yellow sticky traps. Occurrence and damage of plants by pathogens on spring wheat and oilseed rape were directly assessed. Disease infestations on plants were not significantly different between ambient and elevated CO2 in any of the years. Plant phenology, aboveground biomass, foliar nitrogen and carbon concentrations were also not significantly affected by CO2 enrichment. In contrast, the abundance of some species of insects was significantly influenced by elevated CO2, showing either an increase or a decrease in infestation intensity.

2014 ◽  
Vol 11 (1) ◽  
pp. 61-106 ◽  
Author(s):  
B. A. Hungate ◽  
B. D. Duval ◽  
P. Dijkstra ◽  
D. W. Johnson ◽  
M. E. Ketterer ◽  
...  

Abstract. Rising atmospheric CO2 concentrations could alter the nitrogen (N) content of ecosystems by changing N inputs and N losses, but responses vary in field experiments, possibly because multiple mechanisms are at play. We measured N fixation and N losses in a subtropical oak woodland exposed to 11 yr of elevated atmospheric CO2 concentrations. We also explored the role of herbivory, carbon limitation, and competition for light and nutrients in shaping response of N fixation to elevated CO2. Elevated CO2 did not significantly alter gaseous N losses, but lower recovery and deeper distribution in the soil of a long-term 15N tracer indicated that elevated CO2 increased leaching losses. Elevated CO2 had no effect on asymbiotic N fixation, and had a transient effect on symbiotic N fixation by the dominant legume. Elevated CO2 tended to reduce soil and plant concentrations of iron, molybdenum, phosphorus, and vanadium, nutrients essential for N fixation. Competition for nutrients and herbivory likely contributed to the declining response N fixation to elevated CO2. These results indicate that positive responses of N fixation to elevated CO2 may be transient, and that chronic exposure to elevated CO2 can increase N leaching. Models that assume increased fixation or reduced N losses with elevated CO2 may overestimate future N accumulation in the biosphere.


1998 ◽  
Vol 25 (1) ◽  
pp. 87 ◽  
Author(s):  
Damian J. Barrett ◽  
Alan E. Richardson ◽  
Roger M. Gifford

Wheat seedlings were grown in solution culture under adequate and limited phosphorus treatments at current ambient and elevated (approximately 2× ambient) CO2 concentrations. Acid phosphomonoesterase (‘phosphatase’) activity of root segments was measured using p-nitrophenyl phosphate as substrate. When plant growth was P-limited, elevated CO2 concentrations increased phosphatase activity more than at ambient CO2. This result (1) was evident when expressed on a unit root dry weight or root length basis, indicating that increased root enzyme activity was unlikely to be associated with CO2-induced changes in root morphology; (2) occurred when plants were grown aseptically, indicating that the increase in phosphatase activity originated from root cells rather than root- associated microorganisms; (3) was associated with shoot P concentrations below 0.18%; (4) occurred only when wheat roots were grown under P deficiency but not when a transient P deficiency was imposed; and (5) suggest that a previously reported increase in phosphatase activity at elevated CO2 by an Australian native pasture grass (Gifford, Lutze and Barrett 1996; Plant and Soil 187, 369–387) was also a root mediated response. The observed increase in phosphatase activity by plant roots at elevated CO2, if confirmed for a wide range of field pasture and crop species, is one factor which may increase mineralisation of soil organic P as the anthropogenic increase of atmospheric CO2 concentrations continues. But, whether a concomitant increase in plant uptake of P occurs will depend on the relative influence of root and microbial phosphatases, and soil geochemistry in determining the rate of mineralisation of soil organic P for any given soil.


2006 ◽  
Vol 33 (3) ◽  
pp. 219 ◽  
Author(s):  
William D. Stock ◽  
John R. Evans

The relative effects of soil N, water supply and elevated atmospheric CO2 on foliar δ15N values were examined. Phalaris arundinacea L. (Holdfast) and Physalis peruviana L. (Cape Gooseberry) were grown for 80 d with three water availability treatments, two atmospheric CO2 concentrations and four N supply rates. Elevated CO2 increased total plant biomass and N for each treatment and decreased allocation to roots, leaf N concentrations and stomatal conductance. Leaves had less negative leaf δ13C values under low water supply associated with decreased stomatal conductance and increased leaf N concentration, which decreased the ratio of intercellular to ambient CO2 concentration. The δ15N value of the supplied nitrate (4.15‰) was similar to the value for Phalaris leaves (4.11‰), but Cape Gooseberry leaves were enriched (6.52‰). The effects of elevated CO2 on leaf δ15N values were small, with Phalaris showing no significant change, while Cape Gooseberry showed a significant (P < 0.05) decline of 0.42 ‰. Variation in δ15N values was unrelated to stomatal conductance, transpiration, differential use of N forms or denitrification. Plants with low foliar N concentrations tended to be depleted in 15N. We suggest that changes in N allocation alter foliar δ15N values under different CO2 and water treatments.


2014 ◽  
Vol 11 (12) ◽  
pp. 3323-3337 ◽  
Author(s):  
B. A. Hungate ◽  
B. D. Duval ◽  
P. Dijkstra ◽  
D. W. Johnson ◽  
M. E. Ketterer ◽  
...  

Abstract. Rising atmospheric CO2 concentrations may alter the nitrogen (N) content of ecosystems by changing N inputs and N losses, but responses vary in field experiments, possibly because multiple mechanisms are at play. We measured N fixation and N losses in a subtropical oak woodland exposed to 11 years of elevated atmospheric CO2 concentrations. We also explored the role of herbivory, carbon limitation, and competition for light or nutrients in shaping the response of N fixation to elevated CO2. Elevated CO2 did not significantly alter gaseous N losses, but lower recovery and deeper distribution in the soil of a long-term 15N tracer indicated that elevated CO2 increased leaching losses. Elevated CO2 had no effect on nonsymbiotic N fixation, and had a transient effect on symbiotic N fixation by the dominant legume. Elevated CO2 tended to reduce soil and plant concentrations of iron, molybdenum, phosphorus, and vanadium, nutrients essential for N fixation. Competition for nutrients and herbivory likely contributed to the declining response of N fixation to elevated CO2. These results indicate that positive responses of N fixation to elevated CO2 may be transient and that chronic exposure to elevated CO2 can increase N leaching. Models that assume increased fixation or reduced N losses with elevated CO2 may overestimate future N accumulation in the biosphere.


2007 ◽  
Vol 34 (12) ◽  
pp. 1137 ◽  
Author(s):  
Brian J. Atwell ◽  
Martin L. Henery ◽  
Gordon S. Rogers ◽  
Saman P. Seneweera ◽  
Marie Treadwell ◽  
...  

We report on the relationship between growth, partitioning of shoot biomass and hydraulic development of Eucalyptus tereticornis Sm. grown in glasshouses for six months. Close coordination of stem vascular capacity and shoot architecture is vital for survival of eucalypts, especially as developing trees are increasingly subjected to spasmodic droughts and rising atmospheric CO2 levels. Trees were exposed to constant soil moisture deficits in 45 L pots (30–50% below field capacity), while atmospheric CO2 was raised to 700 μL CO2 L–1 in matched glasshouses using a hierarchical, multi-factorial design. Enrichment with CO2 stimulated shoot growth rates for 12–15 weeks in well-watered trees but after six months of CO2 enrichment, shoot biomasses were not significantly heavier (30% stimulation) in ambient conditions. By contrast, constant drought arrested shoot growth after 20 weeks under ambient conditions, whereas elevated CO2 sustained growth in drought and ultimately doubled the shoot biomass relative to ambient conditions. These growth responses were achieved through an enhancement of lateral branching up to 8-fold due to CO2 enrichment. In spite of larger transpiring canopies, CO2 enrichment also improved the daytime water status of leaves of droughted trees. Stem xylem development was highly regulated, with vessels per unit area and cross sectional area of xylem vessels in stems correlated inversely across all treatments. Furthermore, vessel numbers related to the numbers of leaves on lateral branches, broadly supporting predictions arising from Pipe Model Theory that the area of conducting tissue should correlate with leaf area. Diminished water use of trees in drought coincided with a population of narrower xylem vessels, constraining hydraulic capacity of stems. Commensurate with the positive effects of elevated CO2 on growth, development and leaf water relations of droughted trees, the capacity for long-distance water transport also increased.


Sign in / Sign up

Export Citation Format

Share Document