scholarly journals The role of leaf hydraulic conductance dynamics on the timing of leaf senescence

2014 ◽  
Vol 41 (1) ◽  
pp. 37 ◽  
Author(s):  
Juan Pablo Giraldo ◽  
James K. Wheeler ◽  
Brett A. Huggett ◽  
N. Michele Holbrook

We tested the hypothesis that an age-dependent reduction in leaf hydraulic conductance (Kleaf) influences the timing of leaf senescence via limitation of the stomatal aperture on xylem compound delivery to leaves of tomato (Solanum lycopersicum L.), the tropical trees Anacardium excelsum Kunth, Pittoniotis trichantha Griseb, and the temperate trees Acer saccharum Marsh. and Quercus rubra L. The onset of leaf senescence was preceded by a decline in Kleaf in tomato and the tropical trees, but not in the temperate trees. Age-dependent changes in Kleaf in tomato were driven by a reduction in leaf vein density without a proportional increase in the xylem hydraulic supply. A decline in stomatal conductance accompanied Kleaf reduction with age in tomato but not in tropical and temperate tree species. Experimental manipulations that reduce the flow of xylem-transported compounds into leaves with open stomata induced early leaf senescence in tomato and A. excelsum, but not in P. trichantha, A. saccharum and Q. rubra leaves. We propose that in tomato, a reduction in Kleaf limits the delivery of xylem-transported compounds into the leaves, thus making them vulnerable to senescence. In the tropical evergreen tree A. excelsum, xylem-transported compounds may play a role in signalling the timing of senescence but are not under leaf hydraulic regulation; leaf senescence in the deciduous trees A. trichanta, A. saccharum and Q. rubra is not influenced by leaf vascular transport.

2015 ◽  
Vol 38 (12) ◽  
pp. 2735-2746 ◽  
Author(s):  
Marissa A. Caringella ◽  
Franca J. Bongers ◽  
Lawren Sack

Trees ◽  
2003 ◽  
Vol 17 (6) ◽  
pp. 529-534 ◽  
Author(s):  
Andrea Nardini ◽  
Sebastiano Salleo ◽  
Fabio Raimondo

2018 ◽  
Vol 5 (1) ◽  
pp. 98-112
Author(s):  
Frank H. Lynch ◽  
Gretchen B. North ◽  
Breeanna S. Page ◽  
Cullen J. Faulwell

2021 ◽  
Author(s):  
Yu Zhang ◽  
Yanyun Li ◽  
Yuanyuan Zhang ◽  
Zeyu Zhang ◽  
Deyu Zhang ◽  
...  

Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and epigenetic modification, but the precise mechanism is as of yet unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq) and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac and gene expression and transcript elongation. A set of 1,249 up-regulated, differentially expressed genes (DEGs) and 996 down-regulated DEGs showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac was observed during rice flag leaf aging. We produced a landscape of H3K9 acetylation- modified gene expression targets that includes known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis- related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac and also elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.


2016 ◽  
Vol 3 ◽  
pp. e007 ◽  
Author(s):  
Jean-Christophe Domec ◽  
Sari Palmroth ◽  
Ram Oren

Silvicultural practices (e.g., nitrogen addition through fertilization) and environmental changes (e.g., elevated [CO2]) may alter needle structure, impacting mass and energy exchange between the biosphere and atmosphere through alteration of stomatal function. Hydraulic resistances in leaves, controlling the mass and energy exchanges, occur both in the xylem and in the flow paths across the mesophyll to evaporation sites, and therefore largely depends on the structure of the leaf. We used the Free-Air Carbon dioxide Enrichment (FACE) experiment, providing a unique setting for assessing the interaction effects of [CO2] and nitrogen (N) supply to examine how leaf morphological and anatomical characteristics control leaf hydraulic conductance (Kleaf) of loblolly pine (Pinus taeda L.) trees subjected to ambient or elevated (+200 ppmv) CO2 concentrations (CO2a and CO2e, respectively) and to soil nitrogen amendment (N). Our study revealed that CO2e decreased the number of tracheids per needle, and increased the distance from the xylem vascular bundle to the stomata cavities, perturbing the leaf hydraulic system. Both treatments induced a decrease in Kleaf, and CO2e also decreased leaf extravascular conductance (Kextravascular), the conductance to water flow from the xylem to the leaf-internal air space. Decline in Kleaf under CO2e was driven by the decline in Kextravascular, potentially due to longer path for water movement through the mesophyll, explaining the decline in stomatal conductance (gs) observed under CO2e. This suggests that the distance from vascular conduits to stomata sub-cavity was a major constraint of leaf water transport. Across treatments our results showed that needle vein conductivity was slightly more limited by the lumen than by the bordered-pits, the latter accounting for 30-45% of vein resistance. CO2e-induced reduction in Kleaf was also consistent with an increased resistance to xylem collapse due to thicker cell wall. In addition, stomatal closure corresponded to the water potential inducing a reduction in 50% of leaf vascular conductance (Kvascular) via xylem wall rupture. The water potential that was estimated to induce complete xylem wall collapse was related to the water potential at turgor loss. Our study provided a framework for understanding the interaction between CO2e and N availability in affecting leaf anatomy, and the mechanisms for the response of Kleaf to the treatments. These mechanisms can be incorporated into predictive models of gs, critical for estimating forest productivity in water limited environments in current and future climates and a landscape composed of sites of a range in soil N fertility. 


Sign in / Sign up

Export Citation Format

Share Document