scholarly journals Genome-wide H3K9 Acetylation Level Increases with Age-Dependent Senescence of Flag Leaf in Rice (Oryza sativa)

2021 ◽  
Author(s):  
Yu Zhang ◽  
Yanyun Li ◽  
Yuanyuan Zhang ◽  
Zeyu Zhang ◽  
Deyu Zhang ◽  
...  

Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and epigenetic modification, but the precise mechanism is as of yet unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq) and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac and gene expression and transcript elongation. A set of 1,249 up-regulated, differentially expressed genes (DEGs) and 996 down-regulated DEGs showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac was observed during rice flag leaf aging. We produced a landscape of H3K9 acetylation- modified gene expression targets that includes known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis- related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac and also elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1424 ◽  
Author(s):  
Ordoñez ◽  
Martínez-Calle ◽  
Agirre ◽  
Prosper

Gene regulation through DNA methylation is a well described phenomenon that has a prominent role in physiological and pathological cell-states. This epigenetic modification is usually grouped in regions denominated CpG islands, which frequently co-localize with gene promoters, silencing the transcription of those genes. Recent genome-wide DNA methylation studies have challenged this paradigm, demonstrating that DNA methylation of regulatory regions outside promoters is able to influence cell-type specific gene expression programs under physiologic or pathologic conditions. Coupling genome-wide DNA methylation assays with histone mark annotation has allowed for the identification of specific epigenomic changes that affect enhancer regulatory regions, revealing an additional layer of complexity to the epigenetic regulation of gene expression. In this review, we summarize the novel evidence for the molecular and biological regulation of DNA methylation in enhancer regions and the dynamism of these changes contributing to the fine-tuning of gene expression. We also analyze the contribution of enhancer DNA methylation on the expression of relevant genes in acute myeloid leukemia and chronic myeloproliferative neoplasms. The characterization of the aberrant enhancer DNA methylation provides not only a novel pathogenic mechanism for different tumors but also highlights novel potential therapeutic targets for myeloid derived neoplasms.


Author(s):  
Xiaoping Huang ◽  
Hongyu Zhang ◽  
Qiang Wang ◽  
Rong Guo ◽  
Lingxia Wei ◽  
...  

Abstract Key message This study showed the systematic identification of long non-coding RNAs (lncRNAs) involving in flag leaf senescence of rice, providing the possible lncRNA-mRNA regulatory relationships and lncRNA-miRNA-mRNA ceRNA networks during leaf senescence. Abstract LncRNAs have been reported to play crucial roles in diverse biological processes. However, no systematic identification of lncRNAs associated with leaf senescence in plants has been studied. In this study, a genome-wide high throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. A total of 3953 lncRNAs and 38757 mRNAs were identified, of which 343 lncRNAs and 9412 mRNAs were differentially expressed. Through weighted gene co-expression network analysis (WGCNA), 22 continuously down-expressed lncRNAs targeting 812 co-expressed mRNAs and 48 continuously up-expressed lncRNAs targeting 1209 co-expressed mRNAs were considered to be significantly associated with flag leaf senescence. Gene Ontology results suggested that the senescence-associated lncRNAs targeted mRNAs involving in many biological processes, including transcription, hormone response, oxidation–reduction process and substance metabolism. Additionally, 43 senescence-associated lncRNAs were predicted to target 111 co-expressed transcription factors. Interestingly, 8 down-expressed lncRNAs and 29 up-expressed lncRNAs were found to separately target 12 and 20 well-studied senescence-associated genes (SAGs). Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 6 down-expressed lncRNAs possibly regulated 51 co-expressed mRNAs through 15 miRNAs, and 14 up-expressed lncRNAs possibly regulated 117 co-expressed mRNAs through 21 miRNAs. Importantly, by expression validation, a conserved miR164-NAC regulatory pathway was found to be possibly involved in leaf senescence, where lncRNA MSTRG.62092.1 may serve as a ceRNA binding with miR164a and miR164e to regulate three transcription factors. And two key lncRNAs MSTRG.31014.21 and MSTRG.31014.36 also could regulate the abscisic-acid biosynthetic gene BGIOSGA025169 (OsNCED4) and BGIOSGA016313 (NAC family) through osa-miR5809. The possible regulation networks of lncRNAs involving in leaf senescence were discussed, and several candidate lncRNAs were recommended for prior transgenic analysis. These findings will extend the understanding on the regulatory roles of lncRNAs in leaf senescence, and lay a foundation for functional research on candidate lncRNAs.


Plants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 135 ◽  
Author(s):  
Zhongyuan Lin ◽  
Meihui Liu ◽  
Rebecca Njeri Damaris ◽  
Tonny Maraga Nyong’a ◽  
Dingding Cao ◽  
...  

DNA methylation is a vital epigenetic modification. Methylation has a significant effect on the gene expression influencing the regulation of different physiological processes. Current studies on DNA methylation have been conducted on model plants. Lotus (Nelumbo nucifera) is a basic eudicot exhibiting variations during development, especially in flower formation. DNA methylation profiling was conducted on different flower tissues of lotuses through whole genome bisulfite sequencing (WGBS) to investigate the effects of DNA methylation on its stamen petaloid. A map of methylated cytosines at the single base pair resolution for the lotus was constructed. When the stamen was compared with the stamen petaloid, the DNA methylation exhibited a global decrease. Genome-wide relationship analysis between DNA methylation and gene expression identified 31 different methylation region (DMR)-associated genes, which might play crucial roles in floral organ formation, especially in the stamen petaloid. One out of 31 DMR-associated genes, NNU_05638 was homolog with Plant U-box 33 (PUB33). The DNA methylation status of NNU_05638 promoter was distinct in three floral organs, which was confirmed by traditional bisulfite sequencing. These results provide further insights about the regulation of stamen petaloids at the epigenetic level in lotus.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2717-2717 ◽  
Author(s):  
Aniththa Thivakaran ◽  
Lacramioara Botezatu ◽  
Judith Maria Hoenes ◽  
Yahya Saleh Al-Matary ◽  
Nadine Olberding ◽  
...  

Abstract The proper differentiation of hematopoietic stem cells (HSCs) is regulated by a concert of different so called transcription factors (TFs). A disturbed function of these TFs can be the basis of malignant diseases such as acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Growth Factor Independence 1b (Gfi1b) is a repressing transcription factor, with a key role in maintaining the quiescence of HSCs and the proper emergence and maturation of erythrocytes and platelets. Here we show that low expression of GFI1B in blast cells is associated with an inferior prognosis of AML and MDS patients. Using three different mice models of human AML (Nup98-HoxD13, MLL-AF9 and expression of a mutated K-Ras), we could show that reduced expression of Gfi1b accelerates AML development in mice and the latency is even more shortened when Gfi1b is conditionally deleted. Using a limiting dilution assay of transplantation of different number of Gfi1b-wildtype and Gfi1b-deficient cells, we could show that loss of Gfi1b significantly enhanced stemness of leukemic cells. Since Gfii1b is involved in epigenetic regulation of gene expression, we analyzed effect of loss of Gfi1b on an epigenetic level by analyzing the whole genome using Chip-Seq. We found that loss of Gfi1b leads to genome wide increased level of H3K9 acetylation of genes and hence expression of these genes involved in leukemia development. On a molecular level, we found that loss of Gfi1b not only increases the levels of reactive oxygen species (ROS), but also induces gene expression changes of key AML-pathways such as the p38/ AKT pathways. These results demonstrate that Gfi1b functions as an oncosuppressor in MDS/AML development. Disclosures Dührsen: Roche: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Alexion Pharmaceuticals: Honoraria, Research Funding. Khandanpour:Max-Eder: Research Funding; Hospital of Essen university: Research Funding.


2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 25-25
Author(s):  
Yuanyuan Shen ◽  
Justin Hummel ◽  
Isabel Cristina Trindade ◽  
Christos Papageorgiou ◽  
Chi-Ren Shyu ◽  
...  

25 Background: Low cytotoxic T lymphocyte (CTLs) infiltration in colorectal cancer (CRC) tumors is a challenge to treatment with immune checkpoint inhibitors. Consensus molecular subtypes (CMS) classify patients based on tumor attributes, and CMS1 patients include the majority of patients with high CTL infiltration and “inflamed” tumors. Epigenetic modification plays a critical role in gene expression and therapy resistance. Therefore, in this study we compared DNA methylation, gene expression, and CTL infiltration of CMS1 patients to other CMS groups to determine targets for improving immunotherapy in CRC. Methods: RNA-seq (n = 511) and DNA methylation (n = 316) from The Cancer Genome Atlas databases were used to determine gene expression and methylation profiles based on CMSs. CMS1 was used as a reference and compared to other subtypes (CMS2-4). Microenvironment Cell Populations- counter (MCPcounter) was used to determine tumor CTL infiltration. Genes with significantly different expression (p < 0.01, LogFC≥|1.5|) and difference of mean methylation β value ≥|0.25| were integrated for Pearson correlation coefficient analysis with MCPcounter score (r > |0.7|). Results: Comparing CMS1 and CMS2, ARHGAP9, TBX21, and LAG3 were differentially methylated and correlated with CTL scores. ARHGAP9 and TBX21 were decreased and hypomethylated in CMS2. Comparing CMS1 and CMS3, ARHGAP9, TBX21, FMNL1, HLA-DPB1, and STX11 were downregulated in CMS3 and highly correlated with CTL scores. ARHGAP9, FMNL1, HLA-DPB1, and STX11 were hypomethylated in CMS3 and TBX21 was methylated in both, but had a higher methylation ratio in CMS1. Comparing CMS1 and CMS4, TBX21 was the only gene downregulated, hypomethylated, and highly correlated with CTL scores in CMS4 patients. Conclusions: We found six genes differentially expressed, differentially methylated, and highly correlated with CTL infiltration when comparing CMS1 to other CMS groups. Specifically, TBX21 was the only gene highly correlated with CTL scores with differential gene expression and methylation in CMS2-4 when compared to CMS1. Thus, T-bet may be a critical regulator of T cell responses in CRC.


BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Jessica Brunquell ◽  
Stephanie Morris ◽  
Yin Lu ◽  
Feng Cheng ◽  
Sandy D. Westerheide

2015 ◽  
Vol 168 (4) ◽  
pp. 1246-1261 ◽  
Author(s):  
Judy A. Brusslan ◽  
Giancarlo Bonora ◽  
Ana M. Rus-Canterbury ◽  
Fayha Tariq ◽  
Artur Jaroszewicz ◽  
...  

2020 ◽  
Author(s):  
Libo He ◽  
Denghui Zhu ◽  
Pengfei Chu ◽  
Yongming Li ◽  
Lanjie Liao ◽  
...  

Abstract Background: Grass carp is an important farmed fish in China that infected by many pathogens, especially grass carp reovirus (GCRV). Notably, grass carp showed age-dependent susceptibility to GCRV, while the mechanism remains unclear. Herein, we performed a genome-wide survey of differences in DNA methylation and gene expression between five months old grass carp (FMO, sensitive to GCRV) and three years old grass carp (TYO, resistant to GCRV) aim to uncover the mechanism.Results: Colorimetric quantification revealed global methylation level of TYO fish was higher than that of FMO fish. Whole-genome bisulfite sequencing (WGBS) of two groups revealed 6,214 differentially methylated regions (DMRs) and 4,052 differentially methylated genes (DMGs), with most of DMRs and DMGs showed hypermethylation patterns in TYO fish. Correlation analysis indicated that DNA hypomethylation in promoter negative correlated with gene expression, whereas positive correlation was found between gene-body DNA hypermethylation and gene expression. Enrichment analysis revealed that promoter hypo-DMGs in TYO fish were significant enriched in pathways involved in immune response while gene-body hyper-DMGs in TYO fish were significant enriched in terms related to RNA transcription, biosynthetic, and energy production. RNA-seq indicated these terms or pathways involved in immune response, biosynthetic, and energy production also significant enriched for the up-regulated genes in TYO fish. Conclusions: Collectively, these results revealed the genome-wide DNA methylation variations between grass carp with different ages. DNA methylation and gene expression variations in genes involved in immune response, biosynthetic, and energy production may contributed to the age-dependent susceptibility to GCRV in grass carp. Our results will provide important information for the disease-resistant breeding programs of grass carp and may also benefit to the research of age-dependent diseases in human.


2020 ◽  
Author(s):  
Will E Hinckley ◽  
Judy A. Brusslan

AbstractIn plants, the vegetative to reproductive phase transition (termed bolting in Arabidopsis) generally precedes age-dependent leaf senescence (LS). Many studies describe a temporal link between bolting time and LS, as plants that bolt early, senesce early, and plants that bolt late, senesce late. However, the molecular mechanisms underlying this relationship are unknown and are potentially agriculturally important, as they may allow for the development of crops that can overcome early LS caused by stress-related early phase transition. We hypothesized that gene expression changes associated with bolting time were regulating LS. We used a mutant that displays both early bolting and early LS as a model to test this hypothesis. An RNA-seq time series experiment was completed to compare the early bolting mutant to vegetative WT plants of the same age. This allowed us to identify bolting time-associated genes (BAGs) expressed in an older rosette leaf at the time of inflorescence emergence. The BAG list contains many well characterized LS regulators (ORE1, WRKY45, NAP, WRKY28), and GO analysis revealed enrichment for LS and LS-related processes. These bolting associated LS regulators likely contribute to the temporal coupling of bolting time to LS.


2019 ◽  
Author(s):  
Long Xiao ◽  
Zhiguang Zhao ◽  
Fei He ◽  
Zhuo Du

ABSTRACTAn important capacity of genes is the rapid change of expression levels to cope with environment, known as expression plasticity. Elucidating the genomic mechanisms determining expression plasticity is critical for understanding the molecular basis of phenotypic plasticity, fitness, and adaptation. In this study, we systematically quantified genome-wide gene expression plasticity in four metazoan species by integrating changes of expression levels under a large number of genetic and environmental conditions. From this, we demonstrated that expression plasticity measures a distinct feature of gene expression that is orthogonal to other well-studies features including gene expression potential and tissue specificity/broadness. Expression plasticity is conserved across species with important physiological implications. The magnitude of expression plasticity is highly correlated with gene function and genes with high plasticity are implicated in disease susceptibility. Genome-wide analysis identified many conserved promoter cis-elements, trans-acting factors (such as CFCF), and gene body histone modifications (H3K36me3, H3K79me2, and H4K20me1) that are significantly associated with expression plasticity. Analysis of expression changes in perturbation experiments further validated a causal role of specific transcription factors and histone modifications. Collectively, this work reveals general properties, physiological implications, and multivariable regulation of gene expression plasticity in metazoans, extending the mechanistic understanding of gene regulation.


Sign in / Sign up

Export Citation Format

Share Document