Comparative physiological responses of Microcoleus vaginatus and Bryum argenteum to enhanced UV-B radiation under field conditions

2019 ◽  
Vol 46 (3) ◽  
pp. 262
Author(s):  
Rong Hui ◽  
Rongliang Jia ◽  
Yang Zhao ◽  
Guang Song ◽  
Yanhong Gao

UV-B radiation is an important environmental factor affecting the composition and function of biological soil crusts (BSCs). The aim of this study was to compare the effects of enhanced UV-B radiation on BSCs from Tengger Desert, north-western China, which are dominated by the cyanobacterium Microcoleus vaginatus Gom. and moss Bryum argenteum Hedw. The BSCs were exposed to four UV-B supplemental treatments, including 2.75 (control), 3.08, 3.25, and 3.41Wm–2, for 40 days under field condition. In both the studied organisms, UV-B radiation significantly affected the physiological properties (total flavonoids, soluble proteins, soluble sugars, and proline contents). While marginally enhanced UV-B radiation for a short period favoured the growth of M. vaginatus and B. argenteum, excessively high and prolonged UV-B radiation suppressed the physiological properties of the two organisms. Moreover, response index revealed that UV-B radiation had more detrimental effects on B. argenteum, suggesting that B. argenteum is more sensitive to UV-B radiation than M. vaginatus. The findings of this study could help to predict and evaluate the possible changes in the structure and function of desert ecosystems, based on the variation in physiological responses of M. vaginatus and B. argenteum to enhanced UV-B radiation.

Author(s):  
WILLIAM GARDENER

Prince Henri d'Orleans, precluded by French law from serving his country in the profession of arms, had his attention turned early towards exploration. In 1889, accompanied by the experienced traveller Gabriel Bonvalet, he set out from Paris to reach Indo-China overland by way of Central Asia, Tibet and western and south western China. The journey made contributions in the problems of the whereabouts of Lap Nor and the configuration of the then unexplored northern plateau of Tibet; and in botany it produced some species new to science. The party reached Indo-China in 1890. In 1895, having organised an expedition better equipped for topographical survey and for investigations in the fields of natural history and ethnography, Prince Henri set out from Hanoi with the intention of exploring the Mekong through the Chinese province of Yunnan. After proceeding up the left bank of the Salween for a brief part of its course and then alternating between the right and left banks of the Mekong as far up as Tzeku, the party found it advisable to enter Tibet in a north westerly direction through the province of Chamdo and instead crossed the south eastern extremity of the country, the Zayul, by a difficult track which led them to the country of the Hkamti Shans in present day Upper Burma, and thence to India completing a journey of 2000 miles, "1500 of which had been previously untrodden" (Prince Henri). West of the Mekong, the journey established that the Salween, which some geographers had claimed took its rise in or near north western Yunnan, in fact rose well north in Tibet, and that, contrary to previous opinions, the principal headwater of the Irrawaddy rose no further north than latitude 28°30'. Botanical collections were confined to Yunnan, where the tracks permitted mule transport, and they produced a number of species new to science and extended the range of distribution of species already known.


2011 ◽  
Vol 162 (1) ◽  
pp. 201-219 ◽  
Author(s):  
SHU-AN JI ◽  
JESSIE ATTERHOLT ◽  
JINGMAI K. O'CONNOR ◽  
MATTHEW C. LAMANNA ◽  
JERALD D. HARRIS ◽  
...  

2017 ◽  
Vol 163 (3) ◽  
pp. 523-535 ◽  
Author(s):  
Zhengcai Zhang ◽  
Zhibao Dong ◽  
Guangqian Qian ◽  
Guoxi Wu ◽  
Xujia Cui

2020 ◽  
Vol 200 ◽  
pp. 02014
Author(s):  
Bachtiar W Mutaqin ◽  
Muh Aris Marfai ◽  
Muhammad Helmi ◽  
Nurhadi Nurhadi ◽  
Muhammad Rizali Umarella ◽  
...  

Human pressure on the coastal and aquatic surrounding ecosystem in Indonesia, through plastic waste, is increasing, considering that 60 % of the approximately 250 million people live in the coastal areas. Plastic waste originating from human activities has become a massive problem in almost all the small island and coastal regions, especially in the eastern part of Indonesia. This condition is caused by poor waste management and a lack of public awareness in disposing of waste in its place, including in an area known as its marine biodiversities and marine tourism spots like Masohi in Central Maluku. Also, the composition of waste is dominated by plastic waste that cannot be decomposed in a short period, continue circulated on the ocean currents, and will be deposited in coastal areas. Furthermore, some plastic waste will break down into micro-plastics that pollute not only the environment but also marine biota, which are often consumed by humans. This situation profoundly affects the sustainability and function of aquaecosystem services in coastal areas. Therefore, a comprehensive policy and regulation, and interdisciplinary study for analysing vulnerable coastal ecosystem, and mitigating the potential risk of plastic pollution in Masohi, Central Maluku are essential to be conducted.


2020 ◽  
Author(s):  
Capucine Baubin ◽  
Arielle M. Farrell ◽  
Adam Šťovíček ◽  
Lusine Ghazaryan ◽  
Itamar Giladi ◽  
...  

ABSTRACTEcosystem engineers (EEs) are present in every environment and are known to strongly influence ecological processes and thus shape the distribution of species and resources. In this study, we assessed the direct and indirect effect of two EEs (perennial shrubs and ant nests), individually and combined, on the composition and function of arid soil bacterial communities. To that end, top soil samples were collected in the Negev Desert Highlands during the dry season from four patch types: (1) barren soil; (2) under shrubs; (3) near ant nests; or (4) near ant nests situated under shrubs. The bacterial composition was evaluated in the soil samples (fourteen replicates per patch type) using 16S rRNA gene amplicon sequencing, together with physico-chemical measures of the soil, and the potential functions of the community. We have found that the EEs differently affected the community composition. Indeed, barren patches supported a soil microbiome, dominated by Rubrobacter and Proteobacteria, while in EE patches the Deinococcus-Thermus phylum was dominating. The presence of the EEs similarly enhanced the abundance of phototrophic, nitrogen cycle and stress- related genes. In addition, only when both EEs were combined, were the soil characteristics altered. Our results imply that arid landscapes foster unique communities selected by each EE(s), solo or in combination, yet these communities have similar potential biological traits to persist under the harsh arid conditions. Environments with multiple EEs are complicated to study due to the possibility of non-additive effects of EEs and thus further research should be done.IMPORTANCEEcosystem engineers are organisms that can create, modify, or maintain their habitat. They are present in various environments but are particularly conspicuous in desert ecosystems, where their presence is tightly linked to vital resources like water or nutrients. Despite their key role in structuring and controlling desert ecosystems, joint engineering, and their effect on soil function, are unknown. Our study explores the contributions of key ecosystem engineers to the diversity and function of their soil microbiome allowing better understanding of their role in shaping habitats and engineering their activity


Sign in / Sign up

Export Citation Format

Share Document