Rates of carbon fixation, organic carbon release and translocation in a reef-building foraminifer, Marginopora vertebralis

1977 ◽  
Vol 28 (3) ◽  
pp. 311 ◽  
Author(s):  
DF Smith ◽  
WJ Wiebe

Rate measurements obtained in this study and the population densities of foraminifera reported elsewhere suggest that such organisms may well exceed the hermatypic corals in their contribution to reef biogensis and energy fluxes. The average rates at which M. vertebralis photosynthetically fixes carbon into particulate organic carbon, dissolved organic carbon, and shell carbonate, per square centimetre of organism, were estimated to be 50, 1 .5, and 26 ng C min-1 respectively. Exogenously supplied dissolved organic carbon was taken up by M. vertebralis at a rate of 0.05 ng C min-1 in the light, and 0.09 ng C min-1 in the dark per square centimetre of organism. The turnover time of particulate organic carbon (91 h) was measured in a long-term in situ incubation during which 19% of the radioactivity lost from the particulate organic carbon entered the calcareous foraminiferal shell.

Radiocarbon ◽  
2016 ◽  
Vol 59 (3) ◽  
pp. 843-857 ◽  
Author(s):  
Brett D Walker ◽  
Sheila Griffin ◽  
Ellen R M Druffel

AbstractThe standard procedure for storing/preserving seawater dissolved organic carbon (DOC) samples after field collection is by freezing (–20°C) until future analysis can be made. However, shipping and receiving large numbers of these samples without thawing presents a significant logistical problem and large monetary expense. Access to freezers can also be limited in remote field locations. We therefore test an alternative method of preserving and storing samples for the measurement of DOC concentrations ([DOC]), stable carbon (δ13C), and radiocarbon (as ∆14C) isotopic values via UV photooxidation (UVox). We report a total analytical reproducibility of frozen DOC samples to be [DOC]±1.3 µM, ∆14C±9.4‰, and δ13C±0.1‰, comparable to previously reported results (Druffel et al. 2013). Open Ocean DOC frozen versus acidified duplicates were on average offset by ∆DOC±1.1 µM, ∆∆14C± –1.3‰, and ∆δ13C± –0.1‰. Coastal Ocean frozen vs. acidified sample replicates, collected as part of a long-term (380-day) storage experiment, had larger, albeit consistent offsets of ∆DOC±2.2 µM, ∆∆14C±1.5‰, and ∆δ13C± –0.2‰. A simple isotopic mass balance of changes in [DOC], ∆14C, and δ13C values reveals loss of semi-labile DOC (2.2±0.6 µM, ∆14C=–94±105‰, δ13C=–27±10‰; n=4) and semi-recalcitrant DOC (2.4±0.7 µM, ∆14C=–478±116‰, δ13C=–23.4±3.0‰; n=3) in Coastal and Open Ocean acidified samples, respectively.


2020 ◽  
Vol 12 (5) ◽  
pp. 840 ◽  
Author(s):  
Dabin Lee ◽  
SeungHyun Son ◽  
HuiTae Joo ◽  
Kwanwoo Kim ◽  
Myung Joon Kim ◽  
...  

In recent years, the change of marine environment due to climate change and declining primary productivity have been big concerns in the East/Japan Sea, Korea. However, the main causes for the recent changes are still not revealed clearly. The particulate organic carbon (POC) to chlorophyll-a (chl-a) ratio (POC:chl-a) could be a useful indicator for ecological and physiological conditions of phytoplankton communities and thus help us to understand the recent reduction of primary productivity in the East/Japan Sea. To derive the POC in the East/Japan Sea from a satellite dataset, the new regional POC algorithm was empirically derived with in-situ measured POC concentrations. A strong positive linear relationship (R2 = 0.6579) was observed between the estimated and in-situ measured POC concentrations. Our new POC algorithm proved a better performance in the East/Japan Sea compared to the previous one for the global ocean. Based on the new algorithm, long-term POC:chl-a ratios were obtained in the entire East/Japan Sea from 2003 to 2018. The POC:chl-a showed a strong seasonal variability in the East/Japan Sea. The spring and fall blooms of phytoplankton mainly driven by the growth of large diatoms seem to be a major factor for the seasonal variability in the POC:chl-a. Our new regional POC algorithm modified for the East/Japan Sea could potentially contribute to long-term monitoring for the climate-associated ecosystem changes in the East/Japan Sea. Although the new regional POC algorithm shows a good correspondence with in-situ observed POC concentrations, the algorithm should be further improved with continuous field surveys.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 748 ◽  
Author(s):  
Peter Chifflard ◽  
Christina Fasching ◽  
Martin Reiss ◽  
Lukas Ditzel ◽  
Kyle S. Boodoo

Here for the first time, we analyze the concentration of dissolved (DOC) and particulate organic carbon (POC), as well as its optical properties (absorbance and fluorescence) from several proglacial streams across Iceland, the location of Europe’s largest non-polar ice cap. We found high spatial variability of DOC concentrations and dissolved organic matter (DOM) composition during peak melt, sampling 13 proglacial streams draining the 5 main Icelandic glaciers. Although glacial-derived organic matter (OM) was dominated by proteinaceous florescence, organic matter composition was variable among glaciers, often exhibiting relatively higher aromatic content and increased humification (based on absorbance and fluorescence measurements) closer to the glacier terminus, modulated by the presence of glacial lakes. Additional sampling locations the in flow path of the river Hvitá revealed that while POC concentrations decreased downstream, DOC concentrations and the autochthonous fraction of OM increased, suggesting the reworking of the organic carbon by microbial communities, with likely implications for downstream ecosystems as glaciers continue to melt. Based on our measured DOC concentrations ranging from 0.11 mg·L−1 to 0.94 mg·L−1, we estimate a potential annual carbon release of 0.008 ± 0.002 Tg·C·yr−1 from Icelandic glaciers. This non-conservative first estimate serves to highlight the potentially significant contribution of Icelandic pro-glacial streams to the global carbon cycle and the need for the quantification and determination of the spatio-temporal variation of DOC and POC fluxes and their respective drivers, particularly in light of increased rates of melting due to recent trends in climatic warming.


Sign in / Sign up

Export Citation Format

Share Document