Do Otoliths record changes in somatic growth rate? Conflicting evidence form a laboratory and field study of a temperate Reef Fish, Parika scaber

1992 ◽  
Vol 43 (5) ◽  
pp. 1203 ◽  
Author(s):  
MJ Milicich ◽  
JH Choat

Otolith increment widths in a temperate reef fish, Parika scaber (Pisces:Monacanthidae), have been shown to vary in different months and to correlate with changes in somatic growth rate. This results in the persistence of a constant otolith-size/fish-size relationship. In the present study, the response of otolith growth to laboratory-induced changes in body growth was determined over a 10-day period in December 1985. Juveniles were subjected to two ranges of temperature (19-21�C and 24-26�C) and three feeding levels (fully fed, partially fed, and starved) of a diet consisting of larvae of Opifex fuscus, an endemic mosquito. Fish were individually tagged to ensure that changes in growth rate and any associated changes in otolith microstructure could be accurately determined for any individual. Fully fed fish grew more slowly during treatment than they did prior to treatment, and starved fish did not grow at all. Partially fed fish exhibited a size-hierarchy effect, with larger fish increasing in body size at the expense of smaller individuals. No temperature effect on growth rate was recorded. In contrast to the results from an associated field study, otoliths of fully fed fish continued to increase at the same daily width despite the induced alteration in growth rate. Thus, otoliths were disproportionately large compared with estimates from the field. However, otoliths of starved fish were not as large as predicted from a continual production of daily rings at a constant width. Daily ring deposition may have ceased at different times during the experiment for the starved fish, depending on body size. Alternatively, deposition may have continued, but at a spacing that was not detectable by light microscopy. We conclude that adequate validation of response of otolith growth to changes in somatic growth is necessary before individual growth histories can be back-calculated. This is true even where strong evidence from the field suggests that back-calculation is possible.

2021 ◽  
Author(s):  
◽  
Anna Clare Smith

<p>Realistic population models and effective conservation strategies require a thorough understanding of the processes that drive variation in individual growth and survival, particularly within life stages that are subject to high mortality. For fragmented marine populations it is also important to consider how processes driving variation performance may vary through space and time. In this study I assess the interaction of two primary factors driving juvenile demography: benthic habitat composition and larval history traits, in a temperate reef fish, Forsterygion lapillum (the common triplefin). It is well understood that juveniles of many marine organisms are closely associated with structured nearshore habitats as they provide resources (refuge and food sources) that are critical for juvenile growth and/or survival. Nursery habitats are often assessed using measures of fitness of juveniles inhabiting them (e.g. rates of growth). However individual fitness measures may not only be indicative of conditions experienced in the benthic phase, but also an individual's prior history. Recent evidence suggests that variation in larval traits at settlement (e.g., size and age at settlement, larval growth rate) can impact on subsequent ecological performance (e.g., feeding ability and/or predator avoidance) and therefore influence subsequent fitness (i.e. rates of growth and/or probabilities of survival). I used otolith microstructure to assess separate and joint effects of habitat composition and larval traits on the growth of young F. lapillum. Both macroalgal composition of habitat patches and larval traits affected juvenile growth rates, and results suggested that habitat composition may have the potential to mediate fitness-related advantages that may accrue to certain individuals as a result of paternal effects and/or larval dispersal history. Quantifying spatio-temporal variability in the post-settlement fitness of Individuals with that differ in larval traits is essential for effective spatial management of marine populations. I further explore the joint effects of macroalgal composition and larval traits, within the context of additional spatial and temporal environmental variation. Results provide direct evidence that habitat can mediate the strength of carryover effects, but that the impact of habitat was variable between local populations and settlement events through time. In chapter 4 of my thesis, I focus on how small-scale variation in macroalgal composition within a nursery habitat (while controlling for individual variation) can affect the strength of density dependent growth and survival rates of F. lapillum. Density-dependent survival is evident during the first 30 days after settlement, and the strength of density dependence varied as a function of macroalgal composition. Resulting variation in estimates of nursery value (i.e., the number of late-stage juveniles produced per area unit of habitat) highlight the importance of incorporating local scale variation in juvenile demography into assessments of nursery habitat. Lastly, I assess a potential strategy of fishes to persist in a wide range of benthic environments. The ability to adjust traits (i.e., phenotypic plasticity) may allow organisms that encounter a range of unpredictable environmental conditions to maximise fitness within a single generation. In chapter 5 I explore patterns of variation in morphology of juvenile F. lapillum from two different subpopulations and from different macroalgal habitats. I evaluate possible evidence for constraints on morphological variation arising from variation in growth rate prior to and following settlement. Results suggest that for organisms with complex life cycles, variation in growth rates experienced during dispersal may constrain plasticity in later stages.</p>


2021 ◽  
Author(s):  
◽  
Anna Clare Smith

<p>Realistic population models and effective conservation strategies require a thorough understanding of the processes that drive variation in individual growth and survival, particularly within life stages that are subject to high mortality. For fragmented marine populations it is also important to consider how processes driving variation performance may vary through space and time. In this study I assess the interaction of two primary factors driving juvenile demography: benthic habitat composition and larval history traits, in a temperate reef fish, Forsterygion lapillum (the common triplefin). It is well understood that juveniles of many marine organisms are closely associated with structured nearshore habitats as they provide resources (refuge and food sources) that are critical for juvenile growth and/or survival. Nursery habitats are often assessed using measures of fitness of juveniles inhabiting them (e.g. rates of growth). However individual fitness measures may not only be indicative of conditions experienced in the benthic phase, but also an individual's prior history. Recent evidence suggests that variation in larval traits at settlement (e.g., size and age at settlement, larval growth rate) can impact on subsequent ecological performance (e.g., feeding ability and/or predator avoidance) and therefore influence subsequent fitness (i.e. rates of growth and/or probabilities of survival). I used otolith microstructure to assess separate and joint effects of habitat composition and larval traits on the growth of young F. lapillum. Both macroalgal composition of habitat patches and larval traits affected juvenile growth rates, and results suggested that habitat composition may have the potential to mediate fitness-related advantages that may accrue to certain individuals as a result of paternal effects and/or larval dispersal history. Quantifying spatio-temporal variability in the post-settlement fitness of Individuals with that differ in larval traits is essential for effective spatial management of marine populations. I further explore the joint effects of macroalgal composition and larval traits, within the context of additional spatial and temporal environmental variation. Results provide direct evidence that habitat can mediate the strength of carryover effects, but that the impact of habitat was variable between local populations and settlement events through time. In chapter 4 of my thesis, I focus on how small-scale variation in macroalgal composition within a nursery habitat (while controlling for individual variation) can affect the strength of density dependent growth and survival rates of F. lapillum. Density-dependent survival is evident during the first 30 days after settlement, and the strength of density dependence varied as a function of macroalgal composition. Resulting variation in estimates of nursery value (i.e., the number of late-stage juveniles produced per area unit of habitat) highlight the importance of incorporating local scale variation in juvenile demography into assessments of nursery habitat. Lastly, I assess a potential strategy of fishes to persist in a wide range of benthic environments. The ability to adjust traits (i.e., phenotypic plasticity) may allow organisms that encounter a range of unpredictable environmental conditions to maximise fitness within a single generation. In chapter 5 I explore patterns of variation in morphology of juvenile F. lapillum from two different subpopulations and from different macroalgal habitats. I evaluate possible evidence for constraints on morphological variation arising from variation in growth rate prior to and following settlement. Results suggest that for organisms with complex life cycles, variation in growth rates experienced during dispersal may constrain plasticity in later stages.</p>


1993 ◽  
Vol 50 (12) ◽  
pp. 2558-2567 ◽  
Author(s):  
Gregory P. Jenkins ◽  
Megan Shaw ◽  
Bryce D. Stewart

Growth rates of juvenile flounder, Rhombosolea tapirina, determined from daily increment number, and the relationship between otolith and fish sizes (otolith scaling), were compared between two adjacent areas. Swan Bay, Victoria, a sheltered bay with a well-developed seagrass-detrital system, supports higher populations of prey and feeding rates of juvenile flounder than Port Phillip Bay, an area more exposed to waves and tidal currents. Temperature was significantly higher in Swan Bay (though generally less than 1 °C). Growth rates determined from daily increment number were similar within bays, but significantly different between bays. The pooled growth rate for Swan Bay (0.29 mm∙d−1) was significantly higher than for Port Phillip Bay (0.17 mm∙d−1). The same pattern was found for otolith scaling. Most of the variation in growth rates between the two bays was apparently related to food supply. A laboratory experiment indicated that otolith growth rate had a minimum level which was independent of somatic growth rate, and an additional component which was highly correlated with somatic growth rate. This resulted in an exponential decrease in otolith growth per unit somatic growth with increasing somatic growth rate such that variation in otolith scaling would be greatest at low growth rates.


2004 ◽  
Vol 70 (2-3) ◽  
pp. 339-349 ◽  
Author(s):  
A. Brandão ◽  
D.S. Butterworth ◽  
S.J. Johnston ◽  
J.P. Glazer

2005 ◽  
Vol 148 (2) ◽  
pp. 415-425 ◽  
Author(s):  
Dianne L. Watson ◽  
Euan S. Harvey ◽  
Marti J. Anderson ◽  
Gary A. Kendrick

Sign in / Sign up

Export Citation Format

Share Document