Birds in patches of old-growth ash forest, in a matrix of younger forest

1998 ◽  
Vol 4 (2) ◽  
pp. 111 ◽  
Author(s):  
Richard H. Loyn

Birds were studied at 57 sites in Mountain Ash forests in the Central Highlands of Victoria, Australia in spring and summer 1995/96. The sites represented 41 patches of old-growth forest (up to 390 ha in size) in a matrix of regrowth mostly from severe fires in 1939 (57 years previously), with multiple sites in the four largest patches of old-growth and eight sites in 1939 regrowth. Relative bird abundance was assessed by an area-search technique. Generalized linear modelling was used to develop predictive models by regressing abundance of groups of bird species against patch size, isolation and some basic habitat and context variables. Total bird abundance (of all species combined) tended to be higher in old-growth patches than in 1939 regrowth, but not significantly. There was no trend in total abundance with patch size or isolation. Fruit-eating birds tended to be commonest in small patches. Bark-foragers and uncommon birds favoured large patches, though the latter were most common in 1939 regrowth. More variation was explained by habitat and context variables such as aspect, altitude and forest structure. Unevenaged forest structure was often associated with small patches. It was concluded that old-growth forest patches can have similar values per hectare for forest birds whether they are large or small. The regrowth forest matrix appears to protect small patches from factors which reduce densities of forest birds in small forest patches in farmland. The data support the current policy of retaining all old-growth ash forest patches. A range of factors should be considered in selecting regrowth stands of various sizes to regrow as old forest of the future, including their intrinsic potential to develop particular habitats and produce a mix of forest stuctures in the landscape.

1987 ◽  
Vol 17 (7) ◽  
pp. 697-704 ◽  
Author(s):  
James K. Agee ◽  
Mark H. Huff

Fuel succession was quantified for a 515-year chronosequence in a Tsugaheterophylla/Pseudotsugamenziesii forest. Postfire stand ages selected were 1, 3, 19, 110, 181, and 515. After initial reductions due to mortality from fire in the first 3 years, live aboveground biomass in the tree component increased over time to over 1100 t/ha. Shrub and herb layer biomass was highest in year 19 and year 515. Dead aboveground biomass had different trends for different fuel size classes; normalized fuel loadings of five dead and down fuel categories peaked at four different stand ages: 1-h and 10-h timelag (TL) fuels, age 1; 100-h TL fuels, age 19; 1000-h TL fuels, age 110; >1000-h TL fuels, age 515. Surface fire behavior was highest early in the sere and lowest at ages 110–181. Old-growth forest patches appear to be best buffered against forest fire by mature forest patches rather than old growth or recently burned natural stands.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 667
Author(s):  
J. David Urquiza Muñoz ◽  
Daniel Magnabosco Marra ◽  
Robinson I. Negrón-Juarez ◽  
Rodil Tello-Espinoza ◽  
Waldemar Alegría-Muñoz ◽  
...  

The dynamics of forest recovery after windthrows (i.e., broken or uprooted trees by wind) are poorly understood in tropical forests. The Northwestern Amazon (NWA) is characterized by a higher occurrence of windthrows, greater rainfall, and higher annual tree mortality rates (~2%) than the Central Amazon (CA). We combined forest inventory data from three sites in the Iquitos region of Peru, with recovery periods spanning 2, 12, and 22 years following windthrow events. Study sites and sampling areas were selected by assessing the windthrow severity using remote sensing. At each site, we recorded all trees with a diameter at breast height (DBH) ≥ 10 cm along transects, capturing the range of windthrow severity from old-growth to highly disturbed (mortality > 60%) forest. Across all damage classes, tree density and basal area recovered to >90% of the old-growth values after 20 years. Aboveground biomass (AGB) in old-growth forest was 380 (±156) Mg ha−1. In extremely disturbed areas, AGB was still reduced to 163 (±68) Mg ha−1 after 2 years and 323 (± 139) Mg ha−1 after 12 years. This recovery rate is ~50% faster than that reported for Central Amazon forests. The faster recovery of forest structure in our study region may be a function of its higher productivity and adaptability to more frequent and severe windthrows. These varying rates of recovery highlight the importance of extreme wind and rainfall on shaping gradients of forest structure in the Amazon, and the different vulnerabilities of these forests to natural disturbances whose severity and frequency are being altered by climate change.


Ecoscience ◽  
2012 ◽  
Vol 19 (4) ◽  
pp. 344-355 ◽  
Author(s):  
Fabio Lombardi ◽  
Bruno Lasserre ◽  
Gherardo Chirici ◽  
Roberto Tognetti ◽  
Marco Marchetti

2016 ◽  
Vol 128 (1) ◽  
pp. 64 ◽  
Author(s):  
David Lindenmayer

Large old trees are critical structures in the Mountain Ash forests of the Central Highlands of Victoria. They perform many critical ecological and other roles. Populations of these trees are also in serious decline. A range of key management strategies is needed to arrest the decline of existing populations of large old trees and instigate population recovery. In particular all existing large old trees need to be properly protected with adequate buffers of uncut forest. In addition, all stands of old-growth forest, irrespective of their size, need to be protected to ensure they are not logged. The size of the old-growth estate also must be expanded so that it encompasses at least 30%‒50% of the distribution of Mountain Ash. Finally, the recruitment of new cohorts of large old trees is critically important to replace existing trees when they are lost. To achieve this, large areas of existing regrowth forest that regenerated after the 1939 fires need to be excluded from logging and grown through to an old-growth stage. Implementation of altered management in Mountain Ash forests is urgent, as delays in policies will exacerbate the decline of this significant population of large old trees in south-eastern Australia.


2010 ◽  
Vol 40 (9) ◽  
pp. 1803-1814 ◽  
Author(s):  
Danny L. Fry ◽  
Scott L. Stephens

Descriptions of spatial patterns are important components of forest ecosystems, providing insights into functions and processes, yet basic spatial relationships between forest structures and fuels remain largely unexplored. We used standardized omnidirectional semivariance modeling to examine the spatial pattern of fuels and forest structure measured in a systematic nested plot grid covering 144 ha. Forest structure variables were spatially dependent at scales ranging from 62 to 572 m. Cross-variograms of fuels and forest structure showed both positive and negative correlations, ranging from 0.04 to 0.67. Notably, fine fuels were correlated positively and negatively with forest structure variables of white fir ( Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.) and Jeffrey pine ( Pinus jeffreyi Balf.), respectively. Old-growth Jeffrey pine – mixed conifer forest within the study area exhibited both identifiable spatial correlations and high stand-level spatial heterogeneity, as demonstrated by the influence of outliers on the underlying spatial pattern. The spatial dependency of fuels with species-specific variables suggests that less common species may have a large influence in the characterization of forest attributes and that fuel classifications may be improved by accounting for the spatial distributions of overstory species. Spatial correlations have many applications to forest management, including the classification and mapping of forest structure, establishing guidelines for fuel treatments, and restoration of old-growth forest ecosystems.


2006 ◽  
Vol 82 (2) ◽  
pp. 240-256 ◽  
Author(s):  
C. A. Montgomery ◽  
G. S. Latta ◽  
D. M. Adams

Ecosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Kira M. Hoffman ◽  
Brian M. Starzomski ◽  
Ken P. Lertzman ◽  
Ian J. W. Giesbrecht ◽  
Andrew J. Trant

2021 ◽  
Author(s):  
Ricard Arasa‐Gisbert ◽  
Víctor Arroyo‐Rodríguez ◽  
Carmen Galán‐Acedo ◽  
Jorge A. Meave ◽  
Miguel Martínez‐Ramos

Sign in / Sign up

Export Citation Format

Share Document