scholarly journals Sudden Cosmic Noise Absorption at 29 Mc/s

1962 ◽  
Vol 15 (1) ◽  
pp. 20 ◽  
Author(s):  
M Krishnamurthi ◽  
G Sivarama Sastry ◽  
T Seshagiri Rao

Cosmic radio noise observations at 29 Mc/s made at Hyderabad, India (17� 26' N., 78� 27' E.), have been compared with solar flare data for the year 1958. For flares of importance 3 or 3�, there is a correlation of 84% with regard to related effects observed in the cosmic noise records. These effects are either enhanced radio emission or SCNA's. Particular study of the 9 SCNA's observed during the year and comparison with results of Bhonsle working at Ahmedabad, India (23� 02' N., 72� 38' E.), reveal that (a) even in the case of intense flares initial conditions in the terrestrial atmosphere govern the production and maintenance of an SCNA, and (b) therefore, at least at frequencies above 25 Mc/s, SCNA's cannot be used for patrolling even intense solar flares.

2011 ◽  
Vol 9 ◽  
pp. 349-357 ◽  
Author(s):  
T. Renkwitz ◽  
W. Singer ◽  
R. Latteck ◽  
M. Rapp

Abstract. The Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn started to install a new MST radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the previous ALWIN radar which has been successfully operated for more than 10 years. The MAARSY radar provides increased temporal and spatial resolution combined with a flexible sequential point-to-point steering of the radar beam. To increase the spatiotemporal resolution of the observations a 16-port Butler matrix has been built and implemented to the radar. In conjunction with 64 Yagi antennas of the former ALWIN antenna array the Butler matrix simultaneously provides 16 individual beams. The beam forming capability of the Butler matrix arrangement has been verified observing the galactic cosmic radio noise of the supernova remnant Cassiopeia A. Furthermore, this multi beam configuration has been used in passive experiments to estimate the cosmic noise absorption at 53.5 MHz during events of enhanced solar and geomagnetic activity as indicators for enhanced ionization at altitudes below 90 km. These observations are well correlated with simultaneous observations of corresponding beams of the co-located imaging riometer AIRIS (69.14° N, 16.02° E) at 38.2 MHz. In addition, enhanced cosmic noise absorption goes along with enhanced electron densities at altitudes below about 90 km as observed with the co-located Saura MF radar using differential absorption and differential phase measurements.


2004 ◽  
Vol 22 (5) ◽  
pp. 1675-1686 ◽  
Author(s):  
J. R. T. Jussila ◽  
A. T. Aikio ◽  
S. Shalimov ◽  
S. R. Marple

Abstract. Cosmic radio noise absorption (CNA) events associated with equatorward drifting arcs during a substorm growth phase are studied by using simultaneous optical auroral, IRIS imaging riometer and EISCAT incoherent scatter radar measurements. The CNA is generally attributed to energetic particle precipitation in the D-region. However, it has been argued that plasma irregularities or enhanced electron temperature (Te) in the E-region could also produce CNA. Both of the latter mechanisms are related to intense electric fields in the ionosphere. We present two events which occur during a substorm growth phase in the evening MLT sector. In both of the events, an auroral arc is drifting equatorward, together with a region of CNA (auroral absorption bay) located on the equatorward side and outside of the arc. Both of the events are associated with enhanced D-region electron density on the equatorward side of the auroral arc, but in the second event, a region of intense electric field and enhanced electron temperature in the E-region is also located on the equatorward side of the arc. We show that in the studied events neither plasma instabilities nor enhanced Te play a significant role in producing the measured CNA, but the CNA in the vicinity of the equatorward drifting arcs is produced by D-region energetic electron precipitation. Key words. Ionosphere (auroral ionosphere; particle precipitation; electric fields and currents)


2007 ◽  
Vol 25 (2) ◽  
pp. 407-415 ◽  
Author(s):  
A. Kero ◽  
C.-F. Enell ◽  
Th. Ulich ◽  
E. Turunen ◽  
M. T. Rietveld ◽  
...  

Abstract. In this paper we study the effect of artificial HF heating on cosmic radio noise absorption in the D-region ionosphere. The effect has earlier been studied theoretically in idealised cases and without experimental verification. Here we present a 3-dimensional modelling of the effect, taking into account the directivity patterns of the vertical beam of the EISCAT Heater at Tromsø, Norway, and the intersecting beam of the IRIS imaging riometer at Kilpisjärvi, Finland. The heater-induced enhancement of cosmic radio noise absorption at the IRIS frequency (38.2 MHz) is estimated to be between 0.02 dB and 0.05 dB in the most representative model cases. However, a statistical study of IRIS data from a selected set of heating experiments carried out during the years 1994–2004 shows that the median effect is between 0.002 dB and 0.004 dB, i.e. an order of magnitude less than theoretically predicted. This indicates that the actual HF heating effect at D-region altitudes is substantially overestimated by the present theory.


1997 ◽  
Vol 102 (A4) ◽  
pp. 7439-7447 ◽  
Author(s):  
P. H. Stoker ◽  
M. J. Mathews ◽  
M. W. J. Scourfield

2018 ◽  
Vol 7 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Olugbenga Ogunmodimu ◽  
Farideh Honary ◽  
Neil Rogers ◽  
E.O Falayi ◽  
O.S Bolaji

2015 ◽  
Vol 120 (7) ◽  
pp. 5393-5407 ◽  
Author(s):  
Haimeng Li ◽  
Zhigang Yuan ◽  
Xiongdong Yu ◽  
Shiyong Huang ◽  
Dedong Wang ◽  
...  

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Chihiro Tao ◽  
Michi Nishioka ◽  
Susumu Saito ◽  
Daikou Shiota ◽  
Kyoko Watanabe ◽  
...  

AbstractSolar flares trigger an increase in plasma density in the ionosphere including the D region, and cause the absorption of radio waves, especially in high-frequency (HF) ranges, called short-wave fadeout (SWF). To evaluate the SWF duration and absorption statistically, we analyze long-term (36 years) ionosonde data observed by the National Institute of Information and Communications Technology (NICT). The minimum reflection frequency, fmin, is used to detect SWFs from 15-min-resolution ionosonde observations at Kokubunji, Tokyo, from 1981 to 2016. Since fmin varies with local time (LT) and season, we refer to dfmin, which is defined as fmin subtracted by its 27-day running median at the same LT. We find that the occurrence of SWFs detected by three criteria, (i) dfmin ≥ 2.5 MHz, (ii) dfmin ≥ 3.5 MHz, and (iii) blackout, during daytime associated with any flare(s) greater than the C1 class is maximized at local noon and decreases with increasing solar zenith angle. We confirm that the dfmin and duration of SWFs increase with the solar flare class. We estimate the absorption intensity from observations, which is comparable to an empirical relationship obtained from sudden cosmic noise absorption. A generalized empirical relationship for absorption from long-distance circuits shows quantitatively different dependences on solar flare flux, solar zenith angle, and frequency caused by different signal passes compared with that obtained from cosmic noise absorption. From our analysis and the empirical relationships, we estimate the duration of extreme events with occurrence probabilities of once per 10, 100, and 1000 years to be 1.8–3.6, 4.0–6.8, and 7.4–11.9 h, respectively. The longest duration of SWFs of about 12 h is comparable to the solar flare duration derived from an empirical relationship between the solar flare duration and the solar active area for the largest solar active region observed so far.


Sign in / Sign up

Export Citation Format

Share Document