scholarly journals The Momentum Transfer Cross Section for Electrons in Argon in the Energy Range 0 - 4 eV

1977 ◽  
Vol 30 (1) ◽  
pp. 61 ◽  
Author(s):  
HB Milloy ◽  
RW Crompton ◽  
JA Rees ◽  
AG Robertson

The momentum transfer cross section for electron-argon collisions in the range 0–4 eV has been derived from an analysis of recent measurements of DT/μ as a function of E/N at 294 K (Milloy and Crompton 1977a) and W as a function of E/N at 90 and 293 K (Robertson 1977). Modified effective range theory was used in the fitting procedure at low energies. An investigation of the range of validity of this theory indicated that the scattering length and effective range were uniquely determined ,and hence the cross section could be accurately extrapolated to zero energy. It is concluded that for ε ≤ 0.1 eV the error in !he cross section is less than � 6 % and in the range 0.4 ≤ ε (eV) ≤ 0.4 the error is less than � 8 %. In the range 0.1 < ε (eV) < 0.4 the presence of the minimum makes it difficult to determine the errors in the cross section but it is estimated that they are less than −20 %, +12 %. It is demonstrated that no other reported cross sections are compatible with the experimental results used in the present derivation.

1969 ◽  
Vol 22 (6) ◽  
pp. 715 ◽  
Author(s):  
RW Crompton ◽  
DK Gibson ◽  
AI McIntosh

The results of electron drift and diffusion measurements in parahydrogen have been analysed to determine the cross sections for momentum transfer and for rotational and vibrational excitation. The limited number of possible excitation processes in parahydrogen and the wide separation of the thresholds for these processes make it possible to determine uniquely the J = 0 → 2 rotational cross section from threshold to 0.3 eV. In addition, the momentum transfer cross section has been determined for energies less than 2 eV and it is shown that, near threshold, a vibrational cross section compatible with the data must lie within relatively narrow limits. The problems of uniqueness and accuracy inherent in the swarm method of cross section analysis are discussed. The present results are compared with other recent theoretical and experimental determinations; the agreement with the most recent calculations of Henry and Lane is excellent.


1988 ◽  
Vol 41 (5) ◽  
pp. 701 ◽  
Author(s):  
JP England ◽  
MT Elford

Measurements of electron drift velocities have been made in 0�4673% and 1�686% hydrogenkrypton mixtures at 293 K and values of E/ N from 0�08 to 2�5 Td with an estimated uncertainty of <�0�7%. The data have been used in conjunction with the H2 cross sections of England et aL (1988) to derive the momentum transfer cross section for krypton over the energy range 0�05 to 6�0 eV. The drift velocity data have also been used to test the Kr momentum transfer cross sections of Koizumi et aL (1986) and Hunter (personal communication 1988). The cross section of Koizumi et aL is clearly incompatible with the present measurements while the cross section of Hunter has been used to predict these measurements to within 1% to 3%.


1990 ◽  
Vol 43 (1) ◽  
pp. 19 ◽  
Author(s):  
Jim Mitroy

A form of modified effective range theory (MERT) has been used to analyse drift velocity data for both pure krypton and molecular hydrogen-krypton mixtures. The present momentum transfer cross section reproduces the data to within 4% for pure krypton and to within 1 �0% for the H2-Kr mixtures.


1995 ◽  
Vol 48 (3) ◽  
pp. 357 ◽  
Author(s):  
Y Nakamura

The drift velocity and longitudinal diffusion coefficient of electrons in 0�2503% and 1� 97% C02-Ar mixtures were measured for 0�03 ~ E/N ~ 20 Td. The measured electron swarm parameters in the mixtures were used to derive a set of consistent vibrational excitation cross sections for the C02 molecule. Analysis of electron swarms in pure C02 using the present vibrational excitation cross sections was also carried out in order to determine a new momentum transfer cross section for the C02 molecule.


1991 ◽  
Vol 44 (6) ◽  
pp. 647 ◽  
Author(s):  
JP England ◽  
MT Elford

The Bradbury-Nielsen time-of-flight method has been used to measure electron drift velocities at 573 K in pure mercury vapour, a mixture of 46�80% helium-53� 20% mercury vapour and a mixture of 9�37% nitrogen-90� 63% mercury vapour. The E/N and pressure ranges used were O� 2 to 1� 5 Td and 5�4 to 15�2 kPa for pure mercury vapour, 0 �08 to 3�0 Td and 5 �40 to 26�88kPa for the mixture containing helium and 0�06 to 5�0Td and 3�33 to 16�67kPa for the mixture containing nitrogen. It is shown that the use of mixtures significantly reduces the dependence of the measured drift velocity on the pressure, due to the effect of mercury dimers, from that measured in pure mercury vapour. An iterative procedure to derive the momentum transfer cross section for electrons in mercury vapour over the range 0�04 to 4 eV with an uncertainty between �5 and 10% is described. It is concluded that previously published momentum transfer cross sections for mercury vapour derived from drift velocity data are significantly in error, due to diffusion effects and the procedure used to correct for the influence of dimers. The present cross section is in good agreement with the semi-empirical calculations of Walker (personal communication).


1990 ◽  
Vol 43 (6) ◽  
pp. 755 ◽  

The drift velocity of electrons in water vapour at 294 K has been measured over the E/N range 1�4 to 40 Td with an error estimated to be 35 Td. The present data show that J.lN decreases monotonically with decreasing E/N at low E/N values as observed by Wilson et al. (1975) and does not become independent of E/N as indicated by Lowke and Rees (1963). The present values, although lower than those of Lowke and Rees, lie within the combined error limits, except for values below 2 Td. The present data suggest that the momentum transfer cross section at low energies is approximately 10% larger than that obtained by Pack et al. (1962) from their drift velocity measurements.


2008 ◽  
Vol 77 (1) ◽  
Author(s):  
J. J. Engbrecht ◽  
M. J. Erickson ◽  
C. P. Johnson ◽  
A. J. Kolan ◽  
A. E. Legard ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
Author(s):  
S. Hassanpour ◽  
S. Nguyen-Kuok

Cross sections in the very low energy range are also represented by the modified effective-range theory (MERT) for low-energy electron scattering from the rare gas (argon). Simulations using published (theoretical) phase shifts indicate that extended versions of the standard effective-range theory with four adjustable parameters are required to give an adequate description of the phase shifts for argon. A four-parameter MERT fit gives a good representation of a recent electron–argon (e-Ar) total cross section experiment at energies less than 10.0 eV. Cross section Q(l) (E) for collision in dilute gases is given for any order l. Here Q(l) (E) are presented for l = 1. . .6. We present calculations for the elastic cross sections for electron scattering from argon. The improvement in the agreement between our theoretical calculations and the experimental measurements in the case of argon in scattering calculations are showed. Differential scattering experiments have been performed for the systems e-Ar in the energy range E = 0–10 eV and the angular range θ = 0–20° using a crossed-beam arrangement. Differential and integrated cross sections for the elastic scattering of low- and intermediate-energy (0–50 eV) electrons by argon atoms are calculated. For each impact energy, the phase shifts of the lower partial waves are obtained exactly by numerical integration of the radial equation. Transport coefficients of argon plasma are requested exactly, which is why we calculated the average collision cross sections for s = 1. . .11, l = 1. . .6.


2021 ◽  
Vol 75 (3) ◽  
Author(s):  
Kamil Fedus ◽  
Grzegorz P. Karwasz

Abstract Elastic cross sections for electron scattering on tetrafluoromethane (CF$$_4$$ 4 ) from 0 up to 5 eV energy are analyzed using semi-analytical approach to the modified effective range theory (MERT). It is shown that energy and angular variations of differential, integral and momentum transfer cross sections can be parameterized accurately by six MERT coefficients up to the energy region of the resonant scattering. In particular, the model is used to determine the depth and the position of the Ramsauer–Townsend minimum as well as the s-wave scattering length. Moreover, we investigate the influence of the dipole polarizability value on the predictions of present model. To further validate our approach, the elastic data are combined with the Born-dipole cross sections for vibrational excitations as the input data for Monte Carlo simulation of electron swarm coefficients. Graphic Abstract


1984 ◽  
Vol 37 (1) ◽  
pp. 23 ◽  
Author(s):  
ZLj Petrovic ◽  
RW Crompton ◽  
GN Haddad

Negative differential conductivity in gases has been studied using simple models of elastic and inelastic collision cross sections for electron scattering. The use of such models has demonstrated features of the cross sections that lead to the phenomenon, and shown that it can occur without a Ramsauer–Townsend minimum (and even without a sharply rising momentum-transfer cross section) or a special combination of inelastic cross sections.


Sign in / Sign up

Export Citation Format

Share Document