scholarly journals An Experiment to Test the Gravitational Aharonov-Bohm Effect

1994 ◽  
Vol 47 (3) ◽  
pp. 245 ◽  
Author(s):  
Vu B Ho ◽  
Michael J Morgan

The gravitational Aharonov-Bohm (AB) effect is examined in the weak-field approximation to general relativity. In analogy with the electromagnetic AB effect, we find that a gravitoelectromagnetic 4-vector potential gives rise to interference effects. A matter wave interferometry experiment, based on a modification of the gravity-induced quantum interference experiment of Colella, Overhauser and Werner (COW), is proposed to explicitly test the gravitoelectric version of the AB effect in a uniform gravitational field.

2004 ◽  
Vol 19 (01) ◽  
pp. 49-58 ◽  
Author(s):  
GEUSA DE A. MARQUES ◽  
VALDIR B. BEZERRA

A massless spinor particle is considered in the background spacetimes generated by a moving mass current and by a spinning cosmic string. In the weak field approximation it is shown that the solution of the Weyl equations depends on the velocity of the source, which does not affect the curvature in this approximation in the case of a moving mass current. In the case of a spinning cosmic string, the solution of the Weyl equations depends on the deficit angle and on the angular momentum of the string. These effects may be viewed as examples of the gravitational analogues of the Aharonov–Bohm effect in electrodynamics.


1996 ◽  
Vol 49 (6) ◽  
pp. 1063 ◽  
Author(s):  
M Agop ◽  
C Gh Buzea ◽  
V Griga ◽  
C Ciubotariu ◽  
C Buzea ◽  
...  

In the weak field approximation to the gravitational field equations, we study gravitational paramagnetism and diamagnetism, the gravitational Meissner effect and gravitational superconductivity. The spontaneous symmetry breaking corresponds to crossing from closed geodesics to open ones, and to the existence of a critical temperature in the frame of a gauge model at finite temperature. In this later case one can obtain expressions giving the dependence of several superconducting parameters on temperature.


2019 ◽  
Vol 34 (33) ◽  
pp. 1950228
Author(s):  
Alexander J. Silenko ◽  
Yury A. Tsalkou

We calculate the quasi-uniform gravitational field of a disk in the weak-field approximation and demonstrate an inappropriateness of preceding results. The Riemann tensor of this field is determined. The nonexistence of the uniform gravitational field is proven without the use of the weak-field approximation. The previously found difference between equations of motion for the momentum and spin in the accelerated frame and in the quasi-uniform gravitational field also takes place for the disk. However, it does not violate the Einstein equivalence principle because of the nonexistence of the uniform gravitational field.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jian Liang Yang

A systematic examination of the basic theory of general relativity is made, the meaning of coordinates again is emphasized, the confusion caused by unclear meaning of coordinates in the past is corrected, and the expression of the theory is made more accurate. Firstly, the equation of Einstein’s gravitational field is solved in the usual coordinate system, the existence of light speed invariant solution in the spherically symmetric gravitational field is proved, and in the same time, the solution is determined. It turns out that black holes are not an inevitable prediction of general relativity. The more exact formulas for calculating the curvature of light on the surface of the Sun and the precession angle of the orbit of Mercury are given, and the convergence of general relativistic gravity and special relativistic mechanics under the weak field approximation is realized. Finally, it is shown that the coupling coefficient of the gravitational field equation is not unique. Modifying this coefficient is an ideal project to eliminate the singularities of general relativity on the condition keeping the field equation concise and elegant, and moreover, it reveals that dark matter and dark energy are the negative energy field in the matter, the expansion of the universe is the appearance of the gradual formation of galaxies in accordance with fractal rules, not only the space between galaxies is expanding but also the galaxies themselves are also expanding, new matter is continuously generated in the celestial bodies, for the first time, the unity of fractal geometry and cosmic dynamics of general relativity is realized, and the formation and evolution of galaxies are brought into the fractal generation mode. This is a living and vivacious universe in which all aspects are gradually strengthening, in sharp contrast to the dying universe under the current cosmological framework.


2003 ◽  
Vol 12 (08) ◽  
pp. 1385-1397 ◽  
Author(s):  
L. CAMPANELLI ◽  
P. CEA ◽  
G. L. FOGLI ◽  
L. TEDESCO

We investigate gravitational properties of thin planar wall solutions of the Einstein's equations in the weak field approximation. We find the general metric solutions and discuss the behavior of a particle placed initially at rest to one side of the plane. Moreover we study the case of non-reflection-symmetric solutions.


1994 ◽  
Vol 08 (05) ◽  
pp. 301-310 ◽  
Author(s):  
A.M. JAYANNAVAR ◽  
P. SINGHA DEO

We have investigated the magnetoconductance of a normal metal loop connected to ideal wires in the presence of magnetic flux. The quantum mechanical potential, V, in the loop is much higher than that in the connecting wires (V=0). The electrons with energies less than the potential height on entering the loop propagate as evanescent modes. In such a situation, the contribution to the conductance arises from two non-classical effects, namely, Aharonov-Bohm effect and quantum tunneling. For this case we show that, on application of a small magnetic field, the conductance initially always decreases, or small field magnetoconductance is always negative. This is in contrast to the behavior in the absence of the barrier, wherein the small field magnetoconductance is either positive or negative depending on the Fermi energy and other geometric details. We also discuss the possibility of a better switch action based on quantum interference effects in such structures.


In Newtonian mechanics, space and time are separate but in General, Relativity is unified. It is considered that the space in the weak-field approximation is quasi-static and it arises from a perfect field whose particles have very small velocity in comparison to light velocity in this coordinate system and the metric is a gravitational potential tensor of rank two which implies the field of empty space. If each point of an area in N-dimensional space there existed a corresponding definite tensor, where the components of the tensor are the function of space and space acts as the strong or weak gravitational field.


Sign in / Sign up

Export Citation Format

Share Document