Transgenic cotton (Gossypium hirsutum) over-expressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency

2000 ◽  
Vol 27 (11) ◽  
pp. 1041 ◽  
Author(s):  
Marc H. Ellis ◽  
Anthony A. Millar ◽  
Danny J. Llewellyn ◽  
W. James Peacock ◽  
Elizabeth S. Dennis

Cotton (Gossypium hirsutumL.) was transformed with constructs for the over-expression of two enzymes involved in ethanol fermentation, alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC), with the goal of increasing waterlogging tolerance. Four independent transgenic lines transformed with the cotton Adh2 cDNA driven by the CaMV 35S promoter showed ectopic expression of this isozyme in leaves and up to 20-fold greater in vitro ADH activity in roots. Under conditions of O2 deficiency, excised roots from these transgenic plants showed up to 80% increase in ethanol evolution compared to untransformed roots. Conversely, one line transformed with a construct containing the Adh2 coding region in the antisense orientation showed a 65% decrease in ADH activity and a 25% decrease in ethanol production from anaerobic roots relative to untransformed cotton. Lines transformed with a rice Pdc1 cDNA driven by the CaMV 35S promoter showed high levels of expression of the transgene-encoded protein in leaves, but only very low levels of protein and no in vitro enzyme activity detectable in the roots of these plants. Roots from plants transformed with the 35S-Pdc construct did not produce more ethanol than roots from untransformed controls. We tested the ability of cotton roots to withstand low O2 treatments under hydroponic conditions. Neither the ‘ADH’ nor the ‘PDC’ transgenics showed more tolerance than the wild-type on the basis of root growth under a mild stress (5% O2), a strong stress (0% O2 with or without a 5% O2 pretreatment), or in recovery growth following these treatments. Our results show that over-expression of ADH can lead to ethanol over-production (even though the activity of this enzyme by far exceeds that of PDC, its precursor in the pathway), but this is not sufficient to increase waterlogging tolerance in cotton.

2002 ◽  
Vol 29 (5) ◽  
pp. 649 ◽  
Author(s):  
Aziz Smouni ◽  
Laurent Laplaze ◽  
Didier Bogusz ◽  
Fathia Guermache ◽  
Florence Auguy ◽  
...  

The tropical nitrogen-fixing tree, Casuarina glauca Sieb. ex Spreng. was genetically transformed using Agrobacterium tumefaciens C58C1(pGV2260; pBIN19GUSINT). We report on the expression pattern conferred by the cauliflower mosaic virus (CaMV) 35S promoter in transgenic C. glauca plants grown in vitro, and for one year in a greenhouse. Histochemical assays in shoots from in vitro plants revealed β-glucuronidase (GUS) staining in apical and axillary buds, and in nearly all tissues near the base of the stem. In roots, the CaMV 35S drove strong GUS expression in the apex and vascular tissue. In 1-year old plants grown in a greenhouse, the CaMV 35S promoter was highly active, except in peripheral suberized tissues. Transgenic C. glauca plants were nodulated by the actinomycete Frankia. Histochemical assays on vibratome sections of transgenic nodules demonstrated intense GUS activity in the vascular bundle, the phellogen, and in strands of uninfected cells filled with polyphenols. GUS expression was undetectable in Frankia-infected cells.


2016 ◽  
Vol 7 ◽  
Author(s):  
Parisa Azizi ◽  
Mohd Y. Rafii ◽  
Siti N. A. Abdullah ◽  
Mohamed M. Hanafi ◽  
M. Maziah ◽  
...  

HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1864-1869 ◽  
Author(s):  
Kathryn Kamo ◽  
Bong Hee Han

Slow-growing compact calluses were initiated from bulb scales of Lilium longiflorum cv. Nellie White that had been cultured for at least 6 months on Murashige and Skoog (MS) medium with 9 μm dicamba. To develop a reliable selection system, the sensitivity of nontransformed calluses and in vitro plants to different selective agents such as phosphinothricin, kanamycin, geneticin, paromomycin, and hygromycin was tested when grown on MS medium. Nontransformed calluses showed high sensitivity to 0.5 mg·L−1 phosphinothricin, 25 mg·L−1 geneticin, and 5 mg·L−1 hygromycin. Nontransformed plants grown in vitro died on either 2 mg·L−1 phosphinothricin or 75 mg·L−1 hygromycin. Plants did not die when grown on either 200 mg·L−1 kanamycin or 100 mg·L−1 geneticin, and 100 mg·L−1 paromomycin stimulated plant growth. Transformation was achieved using biolistics on callus bombarded with either the bar-uidA fusion gene under control of the CaMV 35S promoter or npt II and uidA under control of the CaMV 35S promoter. One week after biolistic bombardment, callus bombarded with the bar-uidA fusion gene was cultured for 1 month on MS medium supplemented with 9 μm dicamba and 0.1 mg·L−1 phosphinothricin and then transferred to 0.2 mg·L−1 phosphinothricin for 1 month followed by 1.0 mg·L−1 for the next 4 months. Regenerating shoots and well-established plants were cultured on MS medium lacking hormones and with either 0.2 mg·L−1 or 2.0 mg·L−1 phosphinothricin, respectively. Callus bombarded with the npt II gene was cultured on MS medium with 50 mg·L−1 geneticin until shoots regenerated. Regenerated shoots were cultured on MS medium lacking hormones. Under optimal conditions, 10 transgenic plants were selected from seven plates of callus bombarded with the bar-uidA fusion gene using phosphinothricin for selection. Both Southern hybridization of genomic DNA and polymerase chain reaction analysis verified the presence of the transgene in transformed ‘Nellie White’ plants. Transgenic plants were phenotypically normal, and they were crossed with nontransformed plants of L. longiflorum cvs. Sakai, Yin tung, Sakai, and Flavo. The presence of the bar gene in 41% of the T1 progeny plants confirmed stable integration of the transgene into the genomic DNA of transgenic lily plants. β-glucuronidase expression resulting from the uidA gene was demonstrated in leaves and roots of some of the transgenic lily plants by histochemical staining, determination of the specific activity of the β-glucuronidase enzyme, and Northern hybridization.


2012 ◽  
Vol 39 (9) ◽  
pp. 764 ◽  
Author(s):  
Gi-Ho Lee ◽  
Seong-Han Sohn ◽  
Eun-Young Park ◽  
Young-Doo Park

The chemical modification of DNA by methylation is a heritable trait and can be subsequently reversed without altering the original DNA sequence. Methylation can reduce or silence gene expression and is a component of a host’s defence response to foreign nucleic acids. In our study, we employed a plant transformation strategy using Nicotiana benthamiana Domin to study the heritable stability of the introduced transgenes. Through the introduction of the cauliflower mosaic virus (CaMV) 35S promoter and the green fluorescent protein (GFP) reporter gene, we demonstrated that this introduced promoter often triggers a homology-dependent gene-silencing (HDGS) response. These spontaneous transgene-silencing phenomena are due to methylation of the CaMV 35S promoter CAAT box during transgenic plant growth. This process is catalysed by SU(VAR)3–9 homologue 9 (SUVH9), histone deacetylase 1 (HDA1) and domains rearranged methylase 2 (DRM2). In particular, we showed from our data that SUVH9 is the key regulator of methylation activity in epigenetically silenced GFP transgenic lines; therefore, our findings demonstrate that an introduced viral promoter and transgene can be subject to a homology-dependent gene-silencing mechanism that can downregulate its expression and negatively influence the heritable stability of the transgene.


2020 ◽  
Author(s):  
Qiang Wang ◽  
Chong Sha ◽  
Hongcheng Wang ◽  
Kesen Ma ◽  
Juergen Wiegel ◽  
...  

Abstract Background: Hyperthermophilic fermentation at temperatures above 80 °C allows in situ product removal to mitigate the ethanol toxicity, and reduces microbial contamination without autoclaving/cooling of feedstock. Many species of Thermotoga grow at temperatures up to 90 °C, and have enzymes to degrade and utilize lignocelluloses, which provide advantages for achieving consolidated processes of cellulosic ethanol production. However, no CoA-dependent aldehyde dehydrogenase (CoA-Aldh) from any hyperthermophiles has been documented in literature so far. The pyruvate ferredoxin oxidoreductases from hyperthermophiles have pyruvate decarboxylase activity, which convert about 2% and 98% of pyruvate to acetaldehyde and acetyl-CoA (ac-CoA), respectively. Acetyl-CoA can be converted to acetic acid, if there is no CoA-Aldh to convert ac-CoA to acetaldehyde and further to ethanol. Therefore, the current study aimed to identify and characterize a CoA-Aldh activity that mediates ethanol fermentation in hyperthermophiles.Results: In Thermotoga neapolitana (Tne), a hyperthermophilic iron-acetaldehyde/alcohol dehydrogenase (Fe-AAdh) was, for the first time, revealed to catalyze the ac-CoA reduction to form ethanol via an acetaldehyde intermediate, while the annotated aldh gene in Tne genome only encodes a CoA-independent Aldh that oxidizes aldehyde to acetic acid. Three other Tne alcohol dehydrogenases (Adh) exhibited specific physiological roles in ethanol formation and consumption: Fe-Adh2 mainly catalyzed the reduction of acetaldehyde to produce ethanol, and Fe-Adh1 showed significant activities only under extreme conditions, while Zn-Adh showed special activity in ethanol oxidation. In the in vitro formation of ethanol from ac-CoA, a strong synergy was observed between Fe-Adh1 and Fe-AAdh. The Fe-AAdh gene is highly conserved in Thermotoga spp. and in Pyrococus sp., which is probably responsible for ethanol metabolism in hyperthermophiles.Conclusions: Hyperthermophilic Thermotoga spp. are excellent candidates for biosynthesis of cellulosic ethanol fermentation strains. The finding of a novel hyperthermophilic CoA-Aldh activity of Tne Fe-AAdh revealed the existence of a hyperthermophilic fermentation pathway from ac-CoA to ethanol, which offers a basic frame for in vitro synthesis of a highly active AAdh for effective ethanol fermentation pathway in hyperthermophiles, which is a key element for the approach to the consolidated processes of cellulosic ethanol production.


2012 ◽  
Vol 95 (1) ◽  
pp. 186-194 ◽  
Author(s):  
Gurinder Jit Randhawa ◽  
Monika Singh

Abstract Qualitative and quantitative analytical methods based on PCR for Bacillus thuringiensis (Bt) rice hybrid, namely, MRP 5401 Bt expressing a modified version of the Bt cry1Ac gene, are reported here. Multiplex PCR assays were developed to target the cry1Ac transgene, Cauliflower mosaic virus (CaMV) 35S promoter, Agrobacterium tumefaciens nopaline synthase (nos) terminator, the neomycin phosphotransferase II (nptII) marker gene, and an endogenous α-tubulin (TubA) gene in Bt rice. The 3.178 kb region of inserted gene construct comprising the region of the CaMV 35S promoter and cry1Ac gene was amplified, and the construct integrity was confirmed by the nested PCR. The LOD for cry1Ac gene-specific simplex PCR was 0.01%, as established using Bt rice DNA dilutions with 100, 10, 1.0, 0.1, 0.05, 0.01, and 0.001% genetically modified trait. A real-time PCR assay was also developed to quantify the cry1Ac gene. The method performance of the reported real-time PCR assay was in line with the acceptance criteria of Codex Alimentarius Commission ALINORM 10/33/23, with LOD and LOQ values of 0.05%. The reliable PCR assays prior to commercial release of Bt rice would facilitate efficient regulatory compliance for identification of genetic trait, labeling requirements, and effective risk assessment and management. They could also address consumers' concerns and legal disputes that may arise.


Sign in / Sign up

Export Citation Format

Share Document