Abscisic Acid Levels in Nacl-Treated Barley, Cotton and Saltbush

1991 ◽  
Vol 18 (1) ◽  
pp. 17 ◽  
Author(s):  
Z Kefu ◽  
R Munns ◽  
RW King

Exposing barley and cotton plants to 75 mol m-3 NaCl reduced transpiration and increased abscisic acid (ABA) levels in leaves, roots and xylem sap. Exposing saltbush (Atriplex spongiosa) plants to 75 mol m-3 NaCI, at which concentration they grow best, did not affect transpiration or ABA levels but when the NaCl was increased to 150 mol m-3 transpiration fell and ABA levels rose. ABA levels in leaves were high in salt-treated barley and saltbush even when the leaf water status was raised by pressurising the roots. These responses indicate that an increased leaf ABA level was not triggered by leaf water deficit, but by the root's response to the salinity. The flux of ABA in the xylem sap of the three species was more than enough to account for the amount of ABA in leaves, in the presence and absence of salinity. This suggests that the roots may be the source of at least part of the ABA found in leaves.

2008 ◽  
Vol 59 (1) ◽  
pp. 27 ◽  
Author(s):  
A. A. Likoswe ◽  
R. J. Lawn

The response to terminal water deficit stress of three grain legumes, soybean, cowpea and pigeonpea, was evaluated in plants grown in large tubes, in competition with either the same species or one of the other two species. The aim was to explore how species differences in drought response affected water use, growth and survival of plants in pure stand and in competition. Two plants, comprising the test species and its competitor, were grown in each tube. Water was withheld 26 days after sowing by which time each plant had at least three fully expanded trifoliolate leaves. Leaf water status and plant growth were measured through destructive samples when 80% and 90% of the estimated plant available water (PAW) was depleted and at plant death, while PAW depletion, node growth and leaf survival were monitored at 2–3 day intervals until the last plants died (61 days after water was withheld). In pure stand, the rate of PAW depletion was initially slowest in cowpea despite its much larger leaf area, and fastest in soybean. Node growth was most sensitive in cowpea, ceasing at 65% PAW depletion compared with 85% PAW depletion in pigeonpea and soybean, so that the latter two species produced relatively more nodes after water was withheld. However, senescence of the lower leaves was most rapid in soybean and slowest in cowpea. Cowpea and pigeonpea extracted almost all PAW and died an average 18 days and 14 days, respectively, after maximum PAW depletion. In contrast, soybean died before 90% of PAW was depleted and so in pure stand used less water. There were otherwise only minor differences between the species combinations in the timing and maximum level of PAW depletion. The ability of cowpea and pigeonpea to maintain leaf water status above lethal levels for longer was achieved through different means. Cowpea relied primarily on dehydration avoidance and maintained tissue water status higher for longer, whereas pigeonpea demonstrated greater dehydration tolerance. While significant levels of osmotic adjustment (OA) were identified in soybean and pigeonpea, OA appeared to be of limited benefit to leaf survival in soybean. Pigeonpea invested significantly more total dry matter (TDM) in roots than either cowpea or soybean. Cowpea survived longest in pure stand whereas pigeonpea and soybean survived shortest in pure stand, suggesting that the dehydration avoidance response of cowpea was more effective in competition with like plants whereas the dehydration tolerance strategies of pigeonpea and soybean were least effective when competing against like plants. On average, TDM per plant ranked in the order cowpea > soybean > pigeonpea, largely reflecting initial differences in plant size when water was withheld. However, there was an inverse relation between TDM of a species and that of its competitor, so that in effect, water not used by a given plant to produce TDM was used by its competitor and there were no differences in TDM production per tube.


1986 ◽  
Vol 64 (10) ◽  
pp. 2295-2298 ◽  
Author(s):  
Tsai-Yun Lin ◽  
Edward Sucoff ◽  
Mark Brenner

The relationship between abscisic acid (ABA) and leaf water status was studied during the air drying of detached leaves of eastern cottonwood (Populus deltoides Marsh.). The ABA content increased exponentially as leaf water potential and leaf turgor potential decreased. No clearly defined thresholds were observed between ABA content and these variables. ABA content was linearly related to the relative fresh weight and was not related to the osmotic potential.


1991 ◽  
Vol 95 (1) ◽  
pp. 171-173 ◽  
Author(s):  
Michael J. Harris ◽  
William H. Outlaw

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 838A-838
Author(s):  
Robert C. Ebel ◽  
Xiangrong Duan ◽  
Robert M. Augé

Mycorrhizal colonization can alter stomatal behavior of host leaves before or during soil drying, but the mechanism of influence is not always clear. We examined the possibility that mycorrhizal symbiosis might result in either altered stomatal sensitivity to abscisic acid (ABA) moving from roots to shoots in xylem sap, or altered movement of ABA in xylem as a function of soil water content (θ). Mycorrhizal colonization of Vigna unguiculata did not change the relationship between stomatal conductance (gs) and xylem [ABA] during drying of whole root systems. Stomatal conductance was higher in mycorrhizal than in similarly sized and similarly nourished nonmycorrhizal plants when soil moisture was relatively high, perhaps related to lower xylem [ABA] in mycorrhizal plants at high soil θ. Neither gs nor xylem [ABA] was affected by mycorrhizae at low soil θ. Higher gs in mycorrhizal plants was evidently not related to a mycorrhizal effect on leaf water status, as neither gs/shoot Ψ nor shoot Ψ/soil θ relationships were altered by the symbiosis. Stomatal conductance was much more closely correlated with xylem [ABA] than with soil θ or shoot Ψ. Decreased xylem [ABA] may explain why mycorrhizal colonization sometimes increases gs of unstressed mycorrhizal plants in the absence of mycorrhizae-induced changes in host nutrition. This work was supported by USDA NRICGP grant 91-37100-6723 (R.M.A).


2016 ◽  
Vol 67 (5) ◽  
pp. 1339-1355 ◽  
Author(s):  
Juan Zhang ◽  
Haiyue Yu ◽  
Yushi Zhang ◽  
Yubing Wang ◽  
Maoying Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document