stomatal resistance
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 31)

H-INDEX

40
(FIVE YEARS 1)

MAUSAM ◽  
2022 ◽  
Vol 46 (1) ◽  
pp. 57-62
Author(s):  
O.P. BISHNOI ◽  
MOHAN SINGH ◽  
SURINDER SINGH

Complex behaviour of stress indices with relative evapotranspiration was observed in early and late sown wheat, however, under normal sown conditions it was linearly decreasing. Predawn leaf water potential and transpiration rate proved to be a stable stress index parameter for characterizing the internal moisture status in the plant as compared to the canopy temperature and stomatal resistance under stress conditions in wheat. Since it is easy to quantify canopy/leaf temperature and within seasonal variations it is widely used for scheduling irrigation and quantigying moisture stress effects on growth and development in wheat.  


MAUSAM ◽  
2021 ◽  
Vol 47 (4) ◽  
pp. 419-424
Author(s):  
A. CHOWDHURY ◽  
H. P. DAS ◽  
R. P. SAMUI ◽  
A. M. SHEIKH

ABSTRACT. The paper presents the results of an experiment conducted during 1992 and 1993 crop seasons at the farm of  Gujarat Agricultural University, Anand on pigeonpea to determine variations in agro-meteorological characteristics of leaf transpiration leaf temperature plant diffusive resistance and quanta were considered at three levels within the crop canopy in mulched and unmulched fields. The anlilysis rewaled that leaf temperature is more in unmulched field where transpiration rates are lower than the mulched field. Stomatal resistance and the quantum requirements nearly match in both the treatments. Stomatal conductance attains large values in morning and evening hours.    


2021 ◽  
Author(s):  
Evgenii Churiulin ◽  
Vladimir Kopeikin ◽  
Markus Übel ◽  
Jürgen Helmert ◽  
Jean-Maria Bettems ◽  
...  

Abstract. Climatic changes towards warmer temperatures require the need to improve the simplified vegetation scheme of the regional climate model COSMO-CLM, which is not capable of modelling complex processes which depend on temperature, water availability, and day length. Thus, we have implemented the physically based Ball-Berry approach coupled with photosynthesis processes based on Farquhar and Collatz models for C3 and C4 plants in the regional climate model COSMO-CLM (CCLM v 5.16). The implementation of the new algorithms includes the replacement of the “one-big leaf” approach by a “two-big leaf” one. We performed single column simulations with COSMO-CLM over three observational sites with C3 grass plants in Germany for the period from 2010 to 2015 (Parc, Linden and Lindenberg domain). Hereby, we tested three alternative formulations of the new algorithms against a reference simulation (CCLMref) with no changes. The first formulation (CCLM3.5) adapts the algorithms for stomatal resistance from the Community Land Model (CLM v3.5), which depend on leaf photosynthesis, CO2 partial and vapor pressure and maximum stomatal resistance. The second one (CCLM4.5) includes a soil water stress function as in CLM v4.5. The third one (CCLM4.5e) is similar to CCLM4.5, but with adapted equations for dry leaf calculations. The results revealed major differences in the annual cycle of stomatal resistance compared to the original algorithm (CCLMref) of the reference simulation. The largest changes in stomatal resistance are observed from October to April when stomata are closed while summer values are generally less than control values that come closer to measured values. The results indicate that changes in stomatal resistance and photosynthesis algorithms can improve the accuracy of other parameters of the COSMO-CLM model (e.g.: transpiration rate or total evapotranspiration). These results were received by comparing COSMO-CLM parameters with FLUXNET data, meteorological observations at the sites, and GLEAM and HYRAS datasets.


2021 ◽  
Author(s):  
Thibault Lemaitre-Basset ◽  
Ludovic OUDIN ◽  
Guillaume THIREL

Abstract Many hydrological models use the concept of potential evaporation (PE) to simulate actual evaporation. PE formulations often neglect the effect of carbon dioxide (CO2), which challenges their relevance in a context of climate change and rapid changes in CO2 atmospheric concentrations. In this work, we implement three options from the literature to take into account the effect of CO2 on stomatal resistance in the well-known Penman–Monteith PE formulation. We assess their impact on future runoff using the Budyko framework over France. On the basis of an ensemble of Euro-Cordex climate projections using the RCP 4.5 and RCP 8.5 scenarios, we show that taking into account CO2 in PE formulations largely reduces PE values but also limits projections of runoff decrease, especially under an emissive scenario, namely, the RCP 8.5. Whereas the classic Penman–Monteith formulation yields decreasing runoff projections over most of France, taking into account CO2 yields more contrasting results. Runoff increase becomes likely in the north of France, which is an energy-limited area, with different levels of runoff response produced by the three tested formulations. The results highlight the sensitivity of hydrological projections to the processes represented in the PE formulation.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012076
Author(s):  
Wito Plas ◽  
Michel De Paepe

Abstract Research into vertical farms or plant factories is steadily increasing over the years, as the demand for sustainable food production and a shift to more environmental friendly food production is occurring. Modelling plant climate in these confined spaces is therefore essential to guarantee optimal growing conditions. Modelling of plant climate has already been done in greenhouses, but at length scales much bigger than individual leaves. In this study, one single plant will be modelled, using computational fluid dynamics and by incorporating additional source terms in the relevant transport equations. Plants are modelled using the big leaf approach, where a plant is modelled as one artificial leaf. Water vapour flux in plants is controlled by two resistances in series, the aerodynamic resistance, which is a function of the boundary layer around the leaves and the stomatal resistance, which is the resistance against water vapour transport in leaves. Two different plants are studied, impatiens pot plant and basil plants. Values of stomatal resistance for these crops are obtained from literature or were measured. Evapotranspiration was compared with the Penman-Monteith equation.


2021 ◽  
Author(s):  
Shihan Sun ◽  
Amos P. K. Tai ◽  
David H. Y. Yung ◽  
Anthony Y. H. Wong ◽  
Jason A. Ducker ◽  
...  

Abstract. Dry deposition is a key process for surface ozone (O3) removal. Stomatal resistance is a major component of O3 dry deposition, which is parameterized differently in current land surface models and chemical transport models. We developed and used a standalone terrestrial biosphere model, driven by a unified set of prescribed meteorology, to evaluate two widely used dry deposition modeling frameworks, Wesely (1989) and Zhang et al. (2003), with different configurations of stomatal resistance: 1) the default multiplicative method in each deposition scheme; 2) the traditional photosynthesis-based Farquhar-Ball-Berry (FBB) stomatal algorithm; 3) the Medlyn stomatal algorithm based on an optimization theory. We found that using the FBB stomatal approach that captures ecophysiological responses to environmental factors, especially to water stress, can generally improve the simulated dry deposition velocities compared with multiplicative schemes. The Medlyn stomatal approach produces higher stomatal conductance (reverse of stomatal resistance) than FBB and is likely to overestimate dry deposition velocities for major vegetation types, but its performance is greatly improved when spatially varying slope parameters based on annual mean precipitation are used. Large discrepancies were also found in simulated stomatal responses to rising CO2 levels, and that multiplicative stomatal method with an empirical CO2 response function produces reduction (−35 %) in global stomatal conductance, which is much larger than that with photosynthesis-based stomatal method (−14–19 %) when atmospheric CO2 level increases from 390 ppm to 550 ppm. Our results show the potential biases in O3 sink caused by errors in model structure especially in the Wesely dry deposition scheme, and the importance of using photosynthesis-based representation of stomatal resistance in dry deposition schemes under a changing climate and rising CO2 concentration.


2021 ◽  
Vol 13 (20) ◽  
pp. 11399
Author(s):  
Igor Gómez ◽  
Sergio Molina ◽  
Juan José Galiana-Merino ◽  
María José Estrela ◽  
Vicente Caselles

The current study evaluates the ability of the Weather Research and Forecasting Model (WRF) to forecast surface energy fluxes over a region in Eastern Spain. Focusing on the sensitivity of the model to Land Surface Model (LSM) parameterizations, we compare the simulations provided by the original Noah LSM and the Noah LSM with multiple physics options (Noah-MP). Furthermore, we assess the WRF sensitivity to different Noah-MP physics schemes, namely the calculation of canopy stomatal resistance (OPT_CRS), the soil moisture factor for stomatal resistance (OPT_BTR), and the surface layer drag coefficient (OPT_SFC). It has been found that these physics options strongly affect the energy partitioning at the land surface in short-time scale simulations. Aside from in situ observations, we use the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor to assess the Land Surface Temperature (LST) field simulated by WRF. Regarding multiple options in Noah-MP, WRF has been configured using three distinct soil moisture factors to control stomatal resistance (β factor) available in Noah-MP (Noah, CLM, and SSiB-types), two canopy stomatal resistance (Ball–Berry and Jarvis), and two options for surface layer drag coefficients (Monin–Obukhov and Chen97 scheme). Considering the β factor schemes, CLM and SSiB-type β factors simulate very low values of the latent heat flux while increasing the sensible heat flux. This result has been obtained independently of the canopy stomatal resistance scheme used. Additionally, the surface skin temperature simulated by Noah-MP is colder than that obtained by the original Noah LSM. This result is also highlighted when the simulated surface skin temperature is compared to the MSG-SEVIRI LST product. The largest differences between the satellite data and the mesoscale simulations are produced using the Noah-MP configurations run with the Monin–Obukhov parameterization for surface layer drag coefficients. In contrast, the Chen97 scheme shows larger surface skin temperatures than Monin–Obukhov, but at the expense of a decrease in the simulated sensible heat fluxes. In this regard, the ground heat flux and the net radiation play a key role in the simulation results.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2523
Author(s):  
Ikhlas Ghiat ◽  
Hamish R. Mackey ◽  
Tareq Al-Ansari

Detailed knowledge of energy and mass fluxes between land and the atmosphere are necessary to monitor the climate of the land and effectively exploit it in growing agricultural commodities. One of the important surface land fluxes is evapotranspiration, which combines the process of evaporation from the soil and that of transpiration from plants, describing the movement of water vapour from the land to the atmosphere. Accurately estimating evapotranspiration in agricultural systems is of high importance for efficient use of water resources and precise irrigation scheduling operations that will lead to improved water use efficiency. This paper reviews the major mechanistic and empirical models for estimating evapotranspiration including the Penman–Monteith, Stanghellini, Priestly–Taylor, and Hargreaves and Samani models. Moreover, the major differences between the models and their underlined assumptions are discussed. The application of these models is also reviewed for both open and closed field mediums and limitations of each model are highlighted. The main parameters affecting evapotranspiration rates in greenhouse settings including aerodynamic resistance, stomatal resistance and intercepted radiation are thoroughly discussed for accurate measurement and consideration in evapotranspiration models. Moreover, this review discusses direct evapotranspiration measurements systems such as eddy covariance and gas exchange systems. Other direct measurements appertaining to specific parameters such as leaf area index and surface leaf temperature and indirect measurements such as remote sensing are also presented, which can be integrated into evapotranspiration models for adaptation depending on climate and physiological characteristics of the growing medium. This review offers important directions for the estimation of evapotranspiration rates depending on the agricultural setting and the available climatological and physiological data, in addition to experimentally based adaptation processes for ET models. It also discusses how accurate evapotranspiration measurements can optimise the energy, water and food nexus.


Sign in / Sign up

Export Citation Format

Share Document