scholarly journals Increased abscisic acid levels in transgenic maize overexpressingAtLOS5mediated root ion fluxes and leaf water status under salt stress

2016 ◽  
Vol 67 (5) ◽  
pp. 1339-1355 ◽  
Author(s):  
Juan Zhang ◽  
Haiyue Yu ◽  
Yushi Zhang ◽  
Yubing Wang ◽  
Maoying Li ◽  
...  
1991 ◽  
Vol 18 (1) ◽  
pp. 17 ◽  
Author(s):  
Z Kefu ◽  
R Munns ◽  
RW King

Exposing barley and cotton plants to 75 mol m-3 NaCl reduced transpiration and increased abscisic acid (ABA) levels in leaves, roots and xylem sap. Exposing saltbush (Atriplex spongiosa) plants to 75 mol m-3 NaCI, at which concentration they grow best, did not affect transpiration or ABA levels but when the NaCl was increased to 150 mol m-3 transpiration fell and ABA levels rose. ABA levels in leaves were high in salt-treated barley and saltbush even when the leaf water status was raised by pressurising the roots. These responses indicate that an increased leaf ABA level was not triggered by leaf water deficit, but by the root's response to the salinity. The flux of ABA in the xylem sap of the three species was more than enough to account for the amount of ABA in leaves, in the presence and absence of salinity. This suggests that the roots may be the source of at least part of the ABA found in leaves.


1986 ◽  
Vol 64 (10) ◽  
pp. 2295-2298 ◽  
Author(s):  
Tsai-Yun Lin ◽  
Edward Sucoff ◽  
Mark Brenner

The relationship between abscisic acid (ABA) and leaf water status was studied during the air drying of detached leaves of eastern cottonwood (Populus deltoides Marsh.). The ABA content increased exponentially as leaf water potential and leaf turgor potential decreased. No clearly defined thresholds were observed between ABA content and these variables. ABA content was linearly related to the relative fresh weight and was not related to the osmotic potential.


1991 ◽  
Vol 95 (1) ◽  
pp. 171-173 ◽  
Author(s):  
Michael J. Harris ◽  
William H. Outlaw

1989 ◽  
Vol 16 (5) ◽  
pp. 429 ◽  
Author(s):  
IE Henson ◽  
CR Jensen ◽  
NC Turner

Changes in the content of endogenous abscisic acid (ABA) were followed in glasshouse experiments during stomatal closure induced by drought in leaves of lupin (Lupinus cosentinii Guss. cv. Eregulla) and wheat (Triticum aestivum L. cvv. Gamenya and Warigal), species which differ in stomatal sensitivity to changes in leaf water potential. Increases in bulk leaf ABA concentration were closely correlated with decreases in leaf conductance in both species. In lupin, substantial increases in ABA and decreases in conductance occurred over a very narrow range of leaf water potential. ABA concentrations in wheat leaves were highly negatively correlated with bulk leaf turgor, but there was no significant relationship between ABA and turgor in lupin. However, ABA accumulated progressively in the leaves of both species as soil water content decreased. Stomatal closure in lupin could be induced by supplying exogenous ABA to detached leaves via the transpiration stream at concentrations of 10-4 to 10-2 mol m-3 of (+)-ABA. Abaxial stomata closed more readily than those on the adaxial surface in response to both drought and applied ABA. Stomatal response to ABA was not affected by the presence of the cytokinin zeatin, and zeatin by itself had no effect on conductance. When treatments designed to reduce endogenous cytokinin concentrations were imposed (prolonged leaf detachment or prior drought), stomatal response to low concentrations of ABA was enhanced. However, such treatments did not significantly change the stomatal response to high ABA concentrations, nor affect the stomatal conductance of leaves supplied with water alone. It is concluded that drought-induced stomatal closure could be mediated by ABA in both wheat and lupin, despite the initially small change in leaf water status in the latter species.


2021 ◽  
pp. 130-145
Author(s):  
Sumaiya Farzana ◽  
Md. Rasel ◽  
Md. Tahjib Ul Arif ◽  
Mohammad Anwar Hossain ◽  
Md. Golam Azam ◽  
...  

Salinity is one of the most important abiotic stress inhibiting wheat (Triticum aestivum L.) growth and development. Therefore, finding efficient strategies to prevent salt-induced growth retardation and yield loss is critical for modern agriculture to sustain production. The role of exogenous salicylic acid (SA) and thiourea (TU) in regulating salt tolerance was investigated by evaluating morpho-physiological characteristics and antioxidant response in two wheat genotypes at the seedling stage. In both wheat genotypes, salt stress reduced growth characteristics and leaf water status, photosynthetic pigments, while simultaneously increasing the Na+/K+ ratio, hydrogen peroxide (H2O2), and malondialdehyde (MDA). In contrast, exogenous application of SA and/or TU alone in the salt-stressed plants significantly reduced the negative effects of salt stress and improved the growth performance by up-regulating photosynthetic pigments, leaf water status, and proline content in both genotypes. Besides, when compared to seedlings treated only with salt stress, SA and TU played an important role in maintaining lower Na+/K+ levels and reducing oxidative stress by lowering MDA and H2O2 levels in salt-stressed plants through boosting the activities of antioxidant enzymes such as catalase, ascorbate peroxidase, and peroxidase. In addition, hierarchical clustering and principal component analysis revealed a significant interaction among growth characteristics, chlorophyll content, carotenoid content and antioxidant activity with the salt, SA, and/or TU treatments. The findings suggested that exogenous application of SA or TU could be a useful technique for reducing the negative effects of salinity on wheat growth and development.


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1820-1826 ◽  
Author(s):  
Ozlem Altuntas ◽  
H. Yildiz Dasgan ◽  
Yelderem Akhoundnejad

Salt stress is a major problem worldwide because it decreases yields of many important agricultural crops. Silicon is the second-most abundant element in soil and has numerous beneficial effects on plants, particularly in alleviating stress-related impacts. Pepper is an important crop in the Mediterranean region, but pepper varieties differ in their salinity tolerances. The objective of this research was to test the ability of silicon to mitigate effects of salt stress in both salt-sensitive and salt-tolerant cultivars. Salt damage was evaluated by measuring biomass, photosynthetic-related variables, leaf water potential, and membrane damage. We found that the addition of silicon solute to a growth medium was highly effective in improving plant growth by enhancing photosynthesis, stomatal conductance (gS), leaf water status, and membrane stability, which in turn led to higher biomass production in salt-stressed pepper plants, especially in a salt-sensitive cultivar. From an agronomic viewpoint, application of Si may provide economically relevant productivity improvements for salt-sensitive pepper genotypes grown under moderate salinity conditions and for salt-tolerant genotype grown under higher-salinity conditions.


2021 ◽  
Vol 43 (5) ◽  
Author(s):  
Amin Taheri-Garavand ◽  
Abdolhossein Rezaei Nejad ◽  
Dimitrios Fanourakis ◽  
Soodabeh Fatahi ◽  
Masoumeh Ahmadi Majd

1979 ◽  
Vol 92 (1) ◽  
pp. 83-89 ◽  
Author(s):  
H. G. Jones

SummaryThe potential offered for plant breeding programmes by visual scoring techniques for plant water status was investigated in rice and spring wheat. It was found that differing plant morphology could seriously bias visual estimates of leaf water potential, particularly in spring wheat. In spite of this problem, it was found that at least for rice, this type of approach may have potential in future breeding programmes where an estimate of leaf water status is required, such as those for drought tolerance, so long as a high intensity of selection is not necessary.


2015 ◽  
Vol 54 ◽  
pp. 96-107 ◽  
Author(s):  
Zhenxing Cao ◽  
Quan Wang ◽  
Chaolei Zheng

Sign in / Sign up

Export Citation Format

Share Document