dehydration tolerance
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 17)

H-INDEX

31
(FIVE YEARS 2)

2022 ◽  
Vol 174 (1) ◽  
Author(s):  
Nilesh Vikram Lande ◽  
Pragya Barua ◽  
Dipak Gayen ◽  
Vijay Wardhan ◽  
Theboral Jeevaraj ◽  
...  

Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 183-184
Author(s):  
Arun Rajamohan ◽  
Jacob Campbell ◽  
Andrew Dosch ◽  
Joseph P. Rinehart

2021 ◽  
Author(s):  
Shi Lanping ◽  
Li Xia ◽  
Weng Yahong ◽  
Cai Hanyang ◽  
Liu Kaisheng ◽  
...  

Bacterial wilt, a severe disease that affects over 250 plant species, is caused by Ralstonia solanacearum through vascular system blockade. Although both plant immunity and dehydration tolerance might contribute to disease resistance, whether and how they are related are still unclear. Herein, we provide evidence that immunity against R. solanacearum and dehydration tolerance are coupled and regulated by CaPti1-CaERF4 module. By expression profiling, virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana, both CaPti1 and CaERF4 were upregulated by R. solanacearum inoculation, dehydration stress and exogenously applied ABA. They in turn phenocopied with each other in promoting pepper resistance to bacterial wilt not only by activating HR cell death and SA-dependent CaPR1, but also by activating dehydration tolerance related CaOSM1 and CaOSR1, and stomata closure to reduce water loss in ABA signaling dependent manner. Yeast-two hybrid assay showed that CaERF4 interacts with CaPti1, which was confirmed by co-immunoprecipitation and pull-down assays. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that, upon R. solanacearum inoculation, CaPR1, CaOSM1 and CaOSR1 were directly targeted and positively regulated by CaERF4 via binding GCC-box or DRE-box, which was potentiated by CaPti1. In addition, CaPti1-CaERF4 complex might act downstream ABA signaling, since the exogenously ABA did not alter stomata aperture regulated by CaPti1-CaERF4 module. Importantly, CaPti1-CaERF4 module was found also acts positively in pepper growth and response to dehydration stress. Collectively, the results suggest that immunity and dehydration tolerance are coupled and positively regulated by CaPti1-CaERF4 in pepper plants to enhance resistance against R. solanacearum.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jing Zou ◽  
Peitao Lü ◽  
Liwei Jiang ◽  
Kun Liu ◽  
Tao Zhang ◽  
...  

AbstractPetals and leaves share common evolutionary origins but have different phenotypic characteristics, such as the absence of stomata in the petals of most angiosperm species. Plant NAC transcription factor, NAP, is involved in ABA responses and regulates senescence-associated genes, and especially those that affect stomatal movement. However, the regulatory mechanisms and significance of NAP action in senescing astomatous petals is unclear. A major limiting factor is failure of flower opening and accelerated senescence. Our goal is to understand the finely regulatory mechanism of dehydration tolerance and aging in rose flowers. We functionally characterized RhNAP, an AtNAP-like transcription factor gene that is induced by dehydration and aging in astomatous rose petals. Cytokinins (CKs) are known to delay petal senescence and we found that a cytokinin oxidase/dehydrogenase gene 6 (RhCKX6) shares similar expression patterns with RhNAP. Silencing of RhNAP or RhCKX6 expression in rose petals by virus induced gene silencing markedly reduced petal dehydration tolerance and delayed petal senescence. Endogenous CK levels in RhNAP- or RhCKX6-silenced petals were significantly higher than those of the control. Moreover, RhCKX6 expression was reduced in RhNAP-silenced petals. This suggests that the expression of RhCKX6 is regulated by RhNAP. Yeast one-hybrid experiments and electrophoresis mobility shift assays showed that RhNAP binds to the RhCKX6 promoter in heterologous in vivo system and in vitro, respectively. Furthermore, the expression of putative signal transduction and downstream genes of ABA-signaling pathways were also reduced due to the repression of PP2C homolog genes by RhNAP in rose petals. Taken together, our study indicates that the RhNAP/RhCKX6 interaction represents a regulatory step enhancing dehydration tolerance in young rose petals and accelerating senescence in mature petals in a stomata-independent manner.


2021 ◽  
Author(s):  
Satoshi Kimura ◽  
Miho Sato ◽  
Xingyan Fan ◽  
Masayuki Ohmori ◽  
Shigeki Ehira

The aquatic cyanobacterium Anabaena sp. strain PCC 7120 exhibits dehydration tolerance. The regulation of gene expression in response to dehydration is crucial for the acquisition of dehydration tolerance, but the molecular mechanisms underlying dehydration responses remain unknown. In this study, the functions of the response regulator OrrA in the regulation of salt and dehydration responses were investigated. Disruption of orrA abolished or diminished the induction of hundreds of genes in response to salt stress and dehydration. Thus, OrrA is a principal regulator of both stress responses. In particular, OrrA plays a crucial role in dehydration tolerance because an orrA disruptant completely lost the ability to regrow after dehydration. Moreover, in the OrrA regulon, anaKa encoding a protein of unknown function was revealed to be indispensable for dehydration tolerance. OrrA and AnaK are conserved among the terrestrial cyanobacteria, suggesting their conserved functions in dehydration tolerance in cyanobacteria.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009549
Author(s):  
Run-Ze Sun ◽  
Jie Liu ◽  
Yuan-Yuan Wang ◽  
Xin Deng

Pre-exposure of plants to various abiotic conditions confers improved tolerance to subsequent stress. Mild drought acclimation induces acquired rapid desiccation tolerance (RDT) in the resurrection plant Boea hygrometrica, but the mechanisms underlying the priming and memory processes remain unclear. In this study, we demonstrated that drought acclimation-induced RDT can be maintained for at least four weeks but was completely erased after 18 weeks based on a combination of the phenotypic and physiological parameters. Global transcriptome analysis identified several RDT-specific rapid dehydration-responsive genes related to cytokinin and phospholipid biosynthesis, nitrogen and carbon metabolism, and epidermal morphogenesis, most of which were pre-induced by drought acclimation. Comparison of whole-genome DNA methylation revealed dehydration stress-responsive hypomethylation in the CG, CHG, and CHH contexts and acclimation-induced hypermethylation in the CHH context of the B. hygrometrica genome, consistent with the transcriptional changes in methylation pathway genes. As expected, the global promoter and gene body methylation levels were negatively correlated with gene expression levels in both acclimated and dehydrated plants but showed no association with transcriptional divergence during the procedure. Nevertheless, the promoter methylation variations in the CG and CHG contexts were significantly associated with the differential expression of genes required for fundamental genetic processes of DNA conformation, RNA splicing, translation, and post-translational protein modification during acclimation, growth, and rapid dehydration stress response. It was also associated with the dehydration stress-induced upregulation of memory genes, including pre-mRNA-splicing factor 38A, vacuolar amino acid transporter 1-like, and UDP-sugar pyrophosphorylase, which may contribute directly or indirectly to the improvement of dehydration tolerance in B. hygrometrica plants. Altogether, our findings demonstrate the potential implications of DNA methylation in dehydration stress memory and, therefore, provide a molecular basis for enhanced dehydration tolerance in plants induced by drought acclimation.


2020 ◽  
Author(s):  
Rose A. Marks ◽  
Jeramiah J. Smith ◽  
Robert VanBuren ◽  
David Nicholas McLetchie

Sign in / Sign up

Export Citation Format

Share Document