aba content
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 73)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chenchen Guo ◽  
Jigang Li ◽  
Minghui Li ◽  
Xihang Xu ◽  
Ying Chen ◽  
...  

The bulbil is the propagative organ of the P. ternata, which has a great effect on the yield of P. ternata. It is well known that plant hormones play important roles in bulbil formation and development. However, there is not clear about brassinolide (BR) regulation on bulbil formation and development. In this study, we revealed the effects of BR and BR biosynthesis inhibitors (propiconazole, Pcz) application on the histological observation, starch and sucrose metabolism, photosynthesis pathway, and hormone signaling pathway of P. ternata. The results showed that BR treatment reduced starch catabolism to maltodextrin and maltose in bulbil by decreasing BAM and ISA genes expression and increased cellulose catabolism to D-glucose in bulbil by enhancing edg and BGL genes expression. BR treatment enhanced the photosynthetic pigment content and potential maximum photosynthetic capacity and improved the photoprotection ability of P. ternata by increasing the dissipation of excess light energy to heat, thus reduced the photodamage in the PSII center. BR treatment increased the GA and BR content in bulbil of P. ternata, and decreased the ABA content in bulbil of P. ternata. Pcz treatment increased the level of GA, SL, ABA, and IAA in bulbil of P. ternata. BR regulated the signal transduction of BR, IAA, and ABA to regulate the formation and development of bulbil in P. ternata. These results provide molecular insight into BR regulation on bulbil formation and development.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoya Qin ◽  
Yue Yin ◽  
Jianhua Zhao ◽  
Wei An ◽  
Yunfang Fan ◽  
...  

Abstract Background High soil salinity often adversely affects plant physiology and agricultural productivity of almost all crops worldwide, such as the crude drug known as wolfberry. However, the mechanism of this action in wolfberry is not fully understood yet. Results Here in this study, we studied different mechanisms potentially in Chinese wolfberry (Lycium chinese, LC) and black wolfberry (L. ruthenicum, LR) under salinity stress, by analyzing their transcriptome, metabolome, and hormone changes. The hormone detection analysis revealed that the ABA content was significantly lower in LR than LC under normal condition, and increased sharply under salinity stress in LR but not in LC. The transcriptome analysis showed that the salinity-responsive genes in wolfberry were mainly enriched in MAPK signaling, amino sugar and nucleotide sugar metabolism, carbon metabolism, and plant hormone signal transduction pathways in LC, while mainly related to carbon metabolism and protein processing in endoplasmic reticulum in LR. Metabolome results indicated that LR harbored higher flavone and flavonoid contents than LC under normal condition. However, the flavone and flavonoid contents were hardly changed in LR, but increased substantially in LC when exposed to salinity stress. Conclusions Our results adds ABA and flavone to mechanism understanding of salinity tolerance in wolfberry. In addition, flavone plays a positive role in resistance to salinity stress in wolfberry.


2021 ◽  
Author(s):  
Riwen Fei ◽  
Siyang Duan ◽  
Jiayuan Ge ◽  
Tianyi Sun ◽  
Xiaomei Sun

Abstract Seed dormancy and germination is a complex process, which is affected by external environmental conditions and internal factors independently or mutually. Phytohormones play an important regulatory role in this process. ABA was the main phytohormone affecting herbaceous peony seed dormancy release. However, the mechanism of ABA in the dormancy release of herbaceous peony needs to be further explored. Here, transcriptome data was screened from the perspective of ABA metabolism, and significantly differentially expressed PlNCED1 and PlNCED2 were obtained. We found that their expression trends were positively correlated with ABA content. Among them, PlNCED2 had a stronger regulatory effect on ABA content and was more sensitive to exogenous ABA. Overexpression and silencing of PlNCEDs in callus could affect the expression of PlCYP707As and the content of endogenous ABA. Through the observation of seed germination of Arabidopsis thaliana (A. thaliana), we found PlNCED1 and PlNCED2 promoted seed dormancy, and the promotion effect of PlNCED2 was more obvious. In general, PlNCED1 and PlNCED2 participated in the dormancy release of herbaceous peony seeds by regulating the accumulation of endogenous ABA. Our work can reveal the molecular mechanism and related theories of ABA involved in herbaceous peony seed dormancy release.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jieyang Jin ◽  
Mingyue Zhao ◽  
Ting Gao ◽  
Tingting Jing ◽  
Na Zhang ◽  
...  

AbstractPlants have developed sophisticated mechanisms to survive in dynamic environments. Plants can communicate via volatile organic compounds (VOCs) to warn neighboring plants of threats. In most cases, VOCs act as positive regulators of plant defense. However, the communication and role of volatiles in response to drought stress are poorly understood. Here, we showed that tea plants release numerous VOCs. Among them, methyl salicylate (MeSA), benzyl alcohol, and phenethyl alcohol markedly increased under drought stress. Interestingly, further experiments revealed that drought-induced MeSA lowered the abscisic acid (ABA) content in neighboring plants by reducing 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, resulting in inhibition of stomatal closure and ultimately decreasing early drought tolerance in neighboring plants. Exogenous application of ABA reduced the wilting of tea plants caused by MeSA exposure. Exposure of Nicotiana benthamiana to MeSA also led to severe wilting, indicating that the ability of drought-induced MeSA to reduce early drought tolerance in neighboring plants may be conserved in other plant species. Taken together, these results provide evidence that drought-induced volatiles can reduce early drought tolerance in neighboring plants and lay a novel theoretical foundation for optimizing plant density and spacing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kunjing Wu ◽  
Xiaojing Duan ◽  
Zhonglong Zhu ◽  
Ziyang Sang ◽  
Yutong Zhang ◽  
...  

Magnolia wufengensis (Magnoliaceae) is a deciduous landscape species, known for its ornamental value with uniquely shaped and coloured tepals. The species has been introduced to many cities in south China, but low temperatures limit the expansion of this species in cold regions. Bud dormancy is critical for plants to survive in cold environments during the winter. In this study, we performed transcriptomic analysis of leaf buds using RNA sequencing and compared their gene expression during endodormancy, endodormancy release, and ecodormancy. A total of 187,406 unigenes were generated with an average length of 621.82 bp (N50 = 895 bp). In the transcriptomic analysis, differentially expressed genes involved in metabolism and signal transduction of hormones especially abscisic acid (ABA) were substantially annotated during dormancy transition. Our results showed that ABA at a concentration of 100 μM promoted dormancy maintenance in buds of M. wufengensis. Furthermore, the expression of genes related to ABA biosynthesis, catabolism, and signalling pathway was analysed by qPCR. We found that the expression of MwCYP707A-1-2 was consistent with ABA content and the dormancy transition phase, indicating that MwCYP707A-1-2 played a role in endodormancy release. In addition, the upregulation of MwCBF1 during dormancy release highlighted the enhancement of cold resistance. This study provides new insights into the cold tolerance of M. wufengensis in the winter from bud dormancy based on RNA-sequencing and offers fundamental data for further research on breeding improvement of M. wufengensis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kunmei Chen ◽  
Ping Chen ◽  
Xiaojun Qiu ◽  
Jikang Chen ◽  
Gang Gao ◽  
...  

AbstractAbscisic acid (ABA) is known as an important hormone regulating plant stress resistance, such as salt, drought and heavy metal resistance. However, the relationship between ABA and cadmium (Cd) enrichment in ramie (Boehmeria nivea L.) is still unclear to date. This study aimed to reveal the effect of ABA on Cd enrichment in ramie, and we received the following results: (1) Under Cd treatment, the Cd uptake of ramie increased with the increase of Cd concentration, but the chlorophyll content decreased. Under Cd treatment, the ABA content was highest in roots of ramie, followed by that in old leaves, and lowest in new leaves. Long-time treatment of high Cd concentration reduced the ability of endogenous ABA biosynthesis. (2) Spraying ABA on ramie plants (SORP) and adding ABA directly to the culture solution (ADCS) with low concentration can promote the growth of ramie and increase the amount of Cd uptake, and the effect of SORP is better. (3) The molecular reason for the decrease of chlorophyll content due to Cd stress, may be resulted from the down-regulated expression of the chlorophyll synthesis genes (BnPAO and BnNYC1) and the up-regulated expression of the chlorophyll degradation genes (BnCHLH, BnCHLG, BnHAP3A and BnPPR1). The elevated ABA content in ramie plants may due to the up-regulated expression of the ABA synthesis related genes (BnABA1, BnNCED3, and BnNCED5) and the genes (BnABCG40, BnNFXL2, BnPYL9, BnGCR2, BnGTG1, BnBGLU1, BnUTG1, BnVHAG1 and BnABI5) that encoding ABA transport and response proteins, which was consistent with the enhance the Cd uptake in ramie. Our study revealed the relationship between ABA and Cd uptake in ramie, which provided a reference for improving the enrichment of Cd in ramie.


2021 ◽  
Author(s):  
Ting Li ◽  
Feiyang Xuan ◽  
Xiaoying Shen ◽  
Dan Jiang ◽  
Guangxi Ren ◽  
...  

Abstract BackgroundThe glycyrrhizic acid biosynthesis pathway does not exist in isolation, but is connected with the biosynthesis pathways of other secondary metabolites in licorice and finally forms a network. Our previous study found that exogenous spraying of appropriate concentration of abscisic acid (ABA) could increase the content of glycyrrhizic acid (GA) in licorice. However, the mechanism of action remains unknown. We aim to understand the molecular mechanism of ABA promoting the synthesis of GA in licorice and find the molecular marker for the high content of GA germplasm material.MethodsWe analyzed the expression of the key gene of β-AS for GA synthesis after applying ABA, the key functional genes NCED1, NCED3 and NCED4 in the process of ABA synthesis were overexpression, and analyzed the relationship between the SNP polymorphism of the NCED1, NCED3, NCED4 and the content of the GA and ABA in 13 different provenances of licorice with the grey correlation analysis. ResultsThe appropriate concentration of ABA treatment could increase the content of the GA through improving the expression of β-AS. There were significant differences in the content of ABA and GA among the 13 provenances, and the 3 members of the NCEDs family of different provenances had abundant SNP variation sites. Grey correlation and overexpression of NCEDs function both showed that the effect of promoting the synthesis of ABA and GA: NCED1 437 bp G type > NCED3 966 bp G type > NCED4 845 bp A type. All of the above indicated that NCEDs gene variation was the reason for the diversity of GA and ABA content. When selecting high GA germplasm, more priority should be given to NCED1 gene 437 bp G type, NCED3 gene 966 bp G type and NCED4 gene 845 bp A type. ConclusionThis study provides a basis for the selection of excellent GA content germplasm of licorice, and provide some reference for producing a high quality cultivated licorice.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 706
Author(s):  
Lijing Lei ◽  
Yu Zhao ◽  
Kai Shi ◽  
Ying Liu ◽  
Yunxia Hu ◽  
...  

Sophora alopecuroides is known to produce relatively large amounts of alkaloids; however, their ecological consequences remain unclear. In this study, we evaluated the allelopathic potential of the main alkaloids, including aloperine, matrine, oxymatrine, oxysophocarpine, sophocarpine, sophoridine, as well as their mixture both in distilled H2O and in the soil matrix. Our results revealed that all the alkaloids possessed inhibitory activity on four receiver species, i.e., Amaranthus retroflexus, Medicago sativa, Lolium perenne and Setaria viridis. The strength of the phytotoxicity of the alkaloids was in the following order: sophocarpine > aloperine > mixture > sophoridine > matrine > oxysophocarpine > oxymatrine (in Petri dish assays), and matrine > mixture > sophocarpine > oxymatrine > oxysophocarpine > sophoridine > aloperine (in pot experiments). In addition, the mixture of the alkaloids was found to significantly increase the IAA content, MDA content and POD activity of M. sativa seedlings, whereas CTK content, ABA content, SOD activity and CAT activity of M. sativa seedlings decreased markedly. Our results suggest S. alopecuroides might produce allelopathic alkaloids to improve its competitiveness and thus facilitate the establishment of its dominance; the potential value of these alkaloids as environmentally friendly herbicides is also discussed.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 299
Author(s):  
Beatriz Bielsa ◽  
María Ángeles Sanz ◽  
María José Rubio-Cabetas

One of the challenges in rootstock breeding programs is the combination of tolerances to different abiotic stresses in new interspecific hybrids adapted to a wide range of environmental conditions. In this work, two Prunus L. rootstocks: Myrobalan ‘P.2175’ (P. cerasifera Ehrh.) and the almond × peach hybrid ‘Garnem’ (P. amygdalus Batsch × P. persica (L.) Batsch) were subjected to drought during 24 h to understand their drought response mechanisms. The study was conducted monitoring leaf water potential (LWP), stomatal conductance (gs), relative water content (RWC), and electrolyte leakage (EL); as well as the abscisic acid (ABA) content in roots. The relative expression of five drought-relative genes was also studied. The obtained results allowed examining the drought tolerance potential of ‘Garnem’ and Myrobalan ‘P.2175’, demonstrating the great potential of ‘Garnem’ as drought tolerance source in future selections in breeding. Furthermore, based on the obtained data, the transcription factor Myb25-like could be a good biomarker of drought sensitivity for use in Prunus rootstock breeding programs.


2021 ◽  
Author(s):  
Marlon Enrique Lopez ◽  
Iasminy Silva Santos ◽  
Robert Marquez Gutierrez ◽  
Andrea Jaramillo Mesa ◽  
Carlos Henrique Cardon ◽  
...  

Coffee (Coffea arabica L.) presents an asynchronous flowering regulated by endogenous and environmental stimulus, and anthesis occurs once plants are rehydrated after a period of water deficit. We evaluated the evolution of Abscisic Acid (ABA), ethylene, 1-aminocyclopropane-1-carboxylate (ACC) content, ACC oxidase (ACO) activity, and expression analysis of the Lysine Histidine Transporter 1 (LHT1) transporter, in roots, leaves and, flower buds from three coffee genotypes (Coffea arabica L. cv Oeiras, Acaua, and Semperflorens) cultivated under field conditions with two experiments. In a third field experiment, the effect of exogenous supply of ACC in coffee anthesis was evaluated. We found an increased ACC level in all tissues from the three coffee genotypes in the re-watering period just before anthesis for all tissues and high expression of the LHT1 gene in flower buds and leaves. Ethylene content and ACO activity decreased from rainy to dry period whereas ABA content increased. Higher number of opened and G6 stage flower buds were observed in the treatment with exogenous ACC. The results showed that the interaction of ABA-ACO-ethylene and intercellular ACC transport among leaves, buds, and roots in coffee favors an increased level of ACC that is most likely, involved as a modulator in coffee anthesis.


Sign in / Sign up

Export Citation Format

Share Document