scholarly journals 198BOVINE VIRAL DIARRHEA VIRUS (BVDV) IN CELL LINES USED FOR SOMATIC CELL CLONING

2004 ◽  
Vol 16 (2) ◽  
pp. 220
Author(s):  
D. Stringfellow ◽  
K. Riddell ◽  
M.D. Givens ◽  
P. Galik ◽  
E. Sullivan ◽  
...  

Most isolates of BVDV cause unapparent infections in cultured cells. Fetuses, postnatal animals or fetal bovine serum are possible sources of the virus for cultivated cells used as karyoplasts in cloning. Routine screening by veterinary diagnostic laboratories of 39 fetal fibroblast cell lines used in cloning research had revealed that 15 (39%) were positive for BVDV by various assays including RT-nPCR. As some were valuable transgenic cell lines, a rigorous protocol for evaluation of each line was undertaken to confirm infection with BVDV. A cryopreserved vial of each line was thawed, medium discarded and cells incubated (38.5°C in 5% CO2 and air) through 2 passages (6–10 days) in α-MEM supplemented with 10% equine serum. At the end of the second passage, cells were separated from medium, washed and assayed for presence of BVDV using virus isolation in 2 sequential passages in Madin Darby Bovine Kidney Cells and RT-nPCR. Available lots of fetal bovine serum and medium that had been used to culture the cells also were tested for BVDV. When the virus was detected, the RT-nPCR products were sequenced and compared. Also, an attempt was made to evaluate the earliest available cryopreserved passage of any positive cell lines. Results indicated that just 5 of 39 of the original cells tested (13%) were positive. Since cryopreserved earlier passages of 4 of the cell lines were available, they were assayed with the result that 2 of the 4 were not infected at the earliest passage. Further, BVDV was isolated from one lot of fetal bovine serum that was used to culture one of the cell lines. Sequence analysis verified that only 2 of these 4 cell lines were infected with the same isolate of BVDV, and one isolate was identical to the virus found in the fetal bovine serum used in medium to culture it. The discrepancy between our viral detection and that of the diagnostic laboratories is explained in part by the presumed test protocols. All BVDV-positive cells, as reported by the diagnostic laboratories, were positive by RT-nPCR. We presume that they did not separate medium from cells before assays. Thus, any noninfectious viral RNA that was in the medium (e.g. as would be expected in many lots of irradiated serum) would have been reported positive. The only possible sources for BVDV in these cell lines were the fetuses from which they originated or fetal bovine serum used in medium. Sequence analysis confirmed that serum was the source of viral infection in one line. The likely source of virus for 2 other lines was serum, since they were not infected at earlier passages. The 2 remaining cell lines were positive at the earliest available passages, so the fetuses from which cells were harvested could not be discounted as the source of BVDV. This report highlights the risks of introducing BVDV in embryo technologies and the difficulties that can be encountered in attempting accurate diagnosis of the presence of infectious virus.

1998 ◽  
Vol 10 (2) ◽  
pp. 135-139 ◽  
Author(s):  
Steven R. Bolin ◽  
Julia F. Ridpath

One thousand lots of pooled fetal bovine serum (FBS) were tested for contamination with bovine viral diarrhea virus (BVDV) and/or for contamination with neutralizing antibody against BVDV. Noncytopathic or cytopathic BVDV was isolated from 203 lots of FBS. Analysis of the viral isolates identified 115 type 1 and 65 type 2 BVDV isolates. An additional 23 virus isolates were mixtures of >2 BVDV isolates and were not classified to viral genotype. Further characterization of the type 1 viruses identified 51 subgenotype 1a and 64 subgenotype 1b BVDV isolates. Viral neutralizing antibody was detected in 113 lots of FBS. Differential viral neutralization indicated that type 1 BVDV induced the antibody detected in 48 lots of FBS and type 2 BVDV induced the antibody detected in 16 lots of FBS.


2018 ◽  
Vol 38 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Francielle L. Monteiro ◽  
Juliana F. Cargnelutti ◽  
Patrícia Braunig ◽  
Aurea V. Folgueras-Flatschart ◽  
Nathália C. Santos ◽  
...  

ABSTRACT: The present study performed a genetic identification of pestiviruses contaminating batches of fetal bovine serum (FBS) produced in Brazil from 2006 to 2014. Seventy-three FBS lots were screened by a RT-PCR targeting the 5’untranslated region (UTR) of the pestivirus genome. Thirty-nine lots (53.4%) were positive for pestivirus RNA and one contained infectious virus. Nucleotide sequencing and phylogenetic analysis of the 5’UTR revealed 34 lots (46.6%) containing RNA of bovine viral diarrhea virus type 1 (BVDV-1), being 23 BVDV-1a (5’ UTR identity 90.8-98.7%), eight BVDV-1b (93.9-96.7%) and three BVDV-1d (96.2- 97.6%). Six lots (8.2%) contained BVDV-2 (90.3-100% UTR identity) being two BVDV-2a; three BVDV-2b and one undetermined. Four FBS batches (5.5%) were found contaminated with HoBi-like virus (98.3 to 100%). Five batches (6.8%) contained more than one pestivirus. The high frequency of contamination of FBS with pestivirus RNA reinforce the need for systematic and updated guidelines for monitoring this product to reduce the risk of contamination of biologicals and introduction of contaminating agents into free areas.


2012 ◽  
Vol 86 (18) ◽  
pp. 10233-10233 ◽  
Author(s):  
Hua Liu ◽  
Yan Li ◽  
Mingchun Gao ◽  
Kai Wen ◽  
Ying Jia ◽  
...  

We isolated a bovine viral diarrhea virus (BVDV) from commercial fetal bovine serum and designated it HLJ-10. The complete genome is 12,284 nucleotides (nt); the open reading frame is 11,694 nt, coding 3,898 amino acids. Phylogenetic analysis indicated that this strain belongs to BVDV group 2.


BioTechniques ◽  
2020 ◽  
Vol 69 (2) ◽  
pp. 126-132
Author(s):  
Nan Yang ◽  
Don D Sin ◽  
Delbert R Dorscheid

Commercially available lipopolysaccharide (LPS) is commonly used in research. Although protocols for its use are well established, we experienced a loss of LPS responsiveness in our cell cultures despite no obvious experimental changes. Our cell lines were stimulated with LPS and the media quantified for LPS responsiveness via an IL-8 ELISA. We discovered that the major cause of signal loss was differences in fetal bovine serum (FBS) formulation and concentration. One FBS formulation was notably better at eliciting an IL-8 signal than the second FBS, and 10% FBS in media was better at inducing LPS responsiveness than lower concentrations. We urge researchers to be aware of inherent variations in seemingly commonplace reagents as they may be unexpected sources of inconsistencies.


2016 ◽  
Vol 17 (6) ◽  
pp. 476-483 ◽  
Author(s):  
Di Chen ◽  
Xiao-xuan Xin ◽  
Hao-cheng Qian ◽  
Zhang-yin Yu ◽  
Li-rong Shen

2017 ◽  
Vol 1 (2) ◽  
pp. 149-154
Author(s):  
Harun Ülger ◽  
Ahmet K. Karabulut ◽  
Margaret K. Pratten

Abstract Yolk sac blood islands are the first morphologic evidence of hematopoietic development during mammalian embryogenesis, and visseral yolk sac mesoderm gives rise to the first embryonic blood cells within a rich endothelial network. Present study reports the isolation and culture of endothelial cells from 11.5 days old embryonic rat yolk sac. The embryos were dissected from 11.5 days pregnant Wistar rat (Rattus norvegicus) and the external yolk sac membrane and embryos were removed under aseptic condition. After washing three times with Calcium-Magnesium free Hank’s balanced salt solution (CMF-HBSS), the tissue was minced, and fragments were incubated in CMF-HBSS containing 2mg/ml Trypsin, 100mg/ml collagenase I and 40mg/ml DNAse at 37°C until the tissue was completely dispersed. The digestion effect was then neutralized by fetal bovine serum at 1:3 (v/v). The cell suspension was centrifuged at 1000 rpm for 10 min., the supernatants were discarded and the cell pellets resuspended in Dulbecco modified Eagle medium containing 15% fetal bovine serum, 1.25mg/ml amphotericin B, 25mg/ml gentamycin sulphate and 100mg/ml endothelial cell growth supplement. The resuspended cells were plated in two diverse 25cm2 culture flasks for overnight differential adherence at 37°C. The non-adherent cells were removed by gentle aspiration and adherent cells refed with fresh medium. The cells were transferred using 1ml of 0.2% Trypsin when cultures reached near-confluence. The cultured yolk sac endothelial cells had characteristic cobblestone appearence and positive immunofluorescent staining for von Willebrand Factor (vWF). Weibel-Palade bodies, the major ultrastructural marker for endothelium, were also detected in cultured cells by electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document