scholarly journals 38BIRTH OF AFRICAN WILD CAT CLONED KITTENS

2004 ◽  
Vol 16 (2) ◽  
pp. 141 ◽  
Author(s):  
M.C. Gomez ◽  
C.E. Pope ◽  
A.M. Giraldo ◽  
L. Lyons ◽  
R.F. Harris ◽  
...  

The African wild cat (AWC, Felis silvestris lybica; 2n=38) is one of the smallest wildcats, and it’s future is threatened by hybridization with domestic cats (Felis silvestris catus; 2n=38). Nuclear transfer (NT) is a potentially valuable tool for retaining genetic variability, and could assist in the continuation of species with few remaining individuals. Inter-species nuclear transfer into domestic cat (DSH) supports development of somatic cell nuclei from AWC (Gomez et al., 2003, Biol Reprod 69, 1032–1041). Therefore, the purpose of the present study was to evaluate the in vivo developmental competence of nuclear transfer embryos derived by fusion of African wildcat fibroblasts with domestic cat cytoplasts, after transfer into domestic cat recipients. In vivo- and in vitro-matured domestic cat oocytes were mechanically enucleated in modified Tyrodes salt solution supplemented with 20μgmL−1 of cytochalasin B (CCB) and 2mgmL−1 of sucrose, and reconstructed with AWC fibroblast cells derived from an adult male; cultured and passaged 1 to 3 times before serum-starved with DMEM +0.5% FBS and cultured for 5 additional days before use. Fusion took place in fusion medium (0.3M mannitol and 0.1mMMg+2), and membrane fusion was induced by applying a 3s AC pre-pulse of 20V, 1MHz; followed by two 30μs DC pulses of 240V/mm at intervals of 0.5s. Fused couplets were activated 2–3h after fusion by placing the couplets between two electrodes in a fusion chamber containing 3mL of fusion medium and exposing them to two 60μs DC pulses of 120V/mm. Then, couplets were incubated in 30μL drops of Tyrodes solution containing 1% MEM nonessential amino acids, 3mgmL−1 BSA (IVC-1 medium), and supplemented with 10μgmL−1 cycloheximide and 5μgmL−1 CCB at 38°C in 5% CO2 for 4h. After activation, cloned embryos were cultured in 500μL of IVC-1 medium until the day of the transfer. Derived AWC NT embryos were transferred into the oviducts (Day 1) or uteri (Days 5, 6, 7) of 36 gonadotrophin-treated DSH recipients on Day 1 after ovulation or on Days 5, 6, or 7 after oocyte aspiration, respectively. Pregnancy was assessed by ultrasonography on Days 21 to 23. One domestic cat was still pregnant and ongoing on Day 60. Kittens were delivered by Cesarean section in each of the seven pregnant recipients on days 61 to 67 of gestation. The kittens weighed an average of 86.2g (50.0 to 103g) and died within 36h after delivery. The post-mortem pathology reports revealed that most of them had an immature respiratory system. The clonal status of the kittens was assessed by multiplex PCR amplification of 20 microsatellite markers, including seven markers that are known to be on the X chromosome. Results from these assays confirmed that the AWC kittens had originated from the AWC donor somatic cell line and were not related to the DSH recipient cats. In summary, these results indicate that AWC cloned kittens can be produced by ET of embryos derived from AWC cells into DSH cytoplasts. Research was funded partially by the John & Shirley Davies Foundation. Table 1

2005 ◽  
Vol 17 (2) ◽  
pp. 168 ◽  
Author(s):  
M.C. Gomez ◽  
C.E. Pope ◽  
L. Lyons ◽  
A. Cole ◽  
M. Lopez ◽  
...  

One of the most remarkable aspects of somatic cell nuclear transfer (NT) is the possibility of avoiding extinction when there are few remaining animals of a specific felid population. Previously, we produced live male African Wildcat (AWC; Felis lybica) cloned kittens using inter-species nuclear transfer (Gomez et al. 2004 Cloning and Stem Cells 6, 217–228). The production of females is a primary objective of most breeding programs. Therefore, the purpose of the present study was to determine (1) if we could produce live female AWC cloned kittens at a proportion similar to that previously demonstrated with males, and (2) if our inter-species NT technique used to produce AWC is applicable to in vitro production of another non-domestic felid species. Specifically, we evaluated the in vivo developmental competence of NT embryos derived by fusion of Black footed cat (BFC, Felis nigripes) and AWC fibroblasts with domestic cat (DSH, Felis catus) cytoplasts, after transfer into domestic cat recipients. Fibroblast cell lines were established from skin biopsies of BFC (6-year-old), and AWC (12-year-old) adult females. After at least three passages, cells were serum-starved for 5 days and injected into the perivitelline space of enucleated domestic cat oocytes. Fusion of cell-cytoplast couplets was induced by applying a 3-s AC pre-pulse of 20 V, 1 MHz, followed by two 30-μs DC pulses of 240 V/mm. Fused couplets were activated 2 to 3 h after fusion by exposure to two 60 μsec DC pulses of 120 V/mm, followed by 4 h incubation with 10 μg/mL cycloheximide and 5 μg/mL cytochalasin B. Reconstructed BFC (n = 16) and AWC (n = 536) NT Day 1 embryos were transferred by laparoscopy into the oviducts of 1 and 12 gonadotrophin-treated DSH recipients, respectively, on Day 1 after induced ovulation. Pregnancy was assessed by ultrasonography on Day 22. One cat (100%) receiving BFC NT embryos and 5 (41.6%) cats receiving AWC NT embryos became pregnant. Twenty-three AWC cloned embryos implanted and 11 kittens were born. Three BFC NT embryos implanted and the pregnancy is currently ongoing. AWC cloned kittens were phenotypically and genetically identical to their somatic cell donor. Their clonal identity was assessed by multiplex PCR amplification of 20 microsatellite markers, including seven markers that are known to be on the X chromosome. In summary, these results indicate that female AWC cloned kittens can be produced and BFC pregnancy can be established in domestic cat recipients. The embryo implantation rate and viability of AWC female cloned embryos was higher than that observed after the transfer of AWC male cloned embryos. The difference may be due to improvements in the NT procedure, rather than to differences in the sex of the cell lines. Table 1. Implantation rate and fetal survival to term of AWC and BFC NT embryos in pregnant domestic cat recipients


2006 ◽  
Vol 18 (2) ◽  
pp. 133 ◽  
Author(s):  
I. K. Kong ◽  
H. S. Lee ◽  
N. H. Kim ◽  
L. H. Kim ◽  
H. D. Shin ◽  
...  

The leopard cat (Prionailurus bengalensis), a member of the felidae family, is currently listed as threatened by the Ministry of Environment in South Korea. In exotic or endangered species, the lack of oocytes and recipients precludes the use of traditional somatic cell nuclear transfer (NT), and an approach such as intragenus NT may be the only alternative for producing embryos and offspring. In the present study, we used the leopard cat (LC) as a somatic cell donor to evaluate the in vivo developmental competence, after transfer into domestic cat recipients, of cloned embryos produced by the fusion of LC fibroblast cell nuclei with domestic cat cytoplasts. A total of 412 enucleated domestic cat oocytes were reconstructed with either male (Treatment A) or female (Treatment B) adult LC fibroblasts. There was no significant difference in fusion rate (60.4 vs. 56.9%) between Treatment A and B. Of the fused couplets, the cleavage and blastocyst developmental rate in Treatment A were greater than those in Treatment B (69.5 vs. 60.9%; 8.3 vs. 7.8%; P < 0.05). In treatment A, in vivo developmental studies at 30-45 days postimplantation demonstrated 4.8% (21/435) of reconstructed embryos (n = 435) had entered into the uterine lining of recipients, but only 1.4% (6/435) formed fetuses. However, all of the reconstructed embryos failed to develop to term (65 days). Microsatellite analyses confirmed that the nuclear genome of the cloned fetuses were LC in origin.


2018 ◽  
Vol 30 (10) ◽  
pp. 1342 ◽  
Author(s):  
Zhao-Bo Luo ◽  
Long Jin ◽  
Qing Guo ◽  
Jun-Xia Wang ◽  
Xiao-Xu Xing ◽  
...  

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.


2018 ◽  
Vol 24 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Shuang Liang ◽  
Zheng-Wen Nie ◽  
Jing Guo ◽  
Ying-Jie Niu ◽  
Kyung-Tae Shin ◽  
...  

AbstractMicroRNA (miR)-29b plays a crucial role during somatic cell reprogramming. The aim of the current study was to explore the effects of miR-29b on the developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos, as well as the underlying mechanisms of action. The expression level of miR-29b was lower in bovine SCNT embryos at the pronuclear, 8-cell, and blastocyst stages compared within vitrofertilized embryos. In addition, miR-29b regulates the expression of DNA methyltransferases (Dnmt3a/3bandDnmt1) in bovine SCNT embryos. We further investigated SCNT embryo developmental competence and found that miR-29b overexpression during bovine SCNT embryonic development does not improve developmental potency and downregulation inhibits developmental potency. Nevertheless, the quality of bovine SCNT embryos at the blastocyst stage improved significantly. The expression of pluripotency factors and cellular proliferation were significantly higher in blastocysts from the miR-29b overexpression group than the control and downregulation groups. In addition, outgrowth potential in blastocysts after miR-29b overexpression was also significantly greater in the miR-29b overexpression group than in the control and downregulation groups. Taken together, these results demonstrated that miR-29b plays an important role in bovine SCNT embryo development.


2006 ◽  
Vol 18 (2) ◽  
pp. 129 ◽  
Author(s):  
G. Jang ◽  
M. Kim ◽  
H. J. Oh ◽  
F. Y. Heru ◽  
M. S. Hossein ◽  
...  

The present study was performed to collect in vivo matured canine oocytes for somatic cell nuclear transfer (SCNT) and to investigate the developmental competence of canine parthenogenetic and SCNT embryos as the preliminary research for producing cloned dog. The day of ovulation as described by Hase et al. (2000 J. Vet. Med. Sci. 62, 243-248) was determined by serum progesterone levels and at that time vaginal cytology was performed to assess the cornified index. In vivo-matured oocytes were recovered by retrograde flushing of the oviducts at around 48 h (n = 20) or 72 h (n = 25) after the estimated time of ovulation. Overall size of each oocyte, as well as ooplasmic diameter, zona pellucida thickness, and perivitelline space width, was determined after removing the cumulus cells by pipetting (Exp. 1). To determine activation protocols, two treatments, (1) chemical activation (10 �M Ca ionophore for 4 min, followed by incubation for 4 h with 1.9 mM 6-dimethylaminopurine) and (2) electrical stimulation (3.1?3.4 kV/cm in 0.25M mannitol solution), were evaluated to induce parthenogenetic activation of oocytes (Exp. 2). Donor cells were obtained from the primary cell culture of a canine ear skin biopsy, and SCNT was performed according to our laboratory procedures (Jang et al. 2004 Theriogenology 62, 512-521). Three voltages (1.7?2.0 kV/cm, 2.1-2.4 kV/cm, and 3.1-3.4 kV/cm) were tested for fusion. The fused couplets were subjected to chemical or electrical stimulation as in parthenogenetic activation and in vitro developmental competence was monitored (Exp. 3). As a result, more in vivo-matured canine oocytes were obtained at 72 h (92%) than at 48 h (15%) after ovulation; the 72-h occytes had progesterone concentrations of 4-8 ng/mL and a cornified index (vaginal cytology) of 83.34. The average number of oocytes recovered was 12 and sizes of ooplasmic diameter, cytoplasm, zona pellucida, and perivitelline space in in vivo canine-matured oocytes (n = 120) were 178.8 � 9.3 �m, 125.0 � 8.2 �m, 21.7 � 3.7 �m, and 12.7 � 3.5 �m, respectively. Parthenogenetically activated oocytes developed to the 16-cell and morula stages, but failed to develop to the blastocyst stage. Among the three voltages, in the highest voltage (75.2%) the number of fused couplets was increased compared to either of the other voltages (33.3% and 44.0%). Cleavage rates (60.9% vs. 58.0%) of cloned embryos were not significantly affected by method of activation. In terms of in vitro developmental competence, cloned embryos developed to the 16-cell or morula stage in vitro after electrical or chemical activation, respectively. In conclusion, in the present study we demonstrated that measurement of progesterone levels, in combination with evaluation of vaginal cytology, can be used to determine the estimated time of ovulation in bitches. In addition, we determined fusion/activation protocols that resulted in in vitro development of a portion of parthenogenetically activated and cloned embryos to the 16-cell and morula stages. This study was supported by grants from the Biogreen 21-1000520030100000.


2006 ◽  
Vol 18 (2) ◽  
pp. 139 ◽  
Author(s):  
S. Mitalipov ◽  
Q. Zhou ◽  
J. Byrne ◽  
W.-Z. Ji ◽  
D. Wolf

Successful reprogramming of somatic cell nuclei after nuclear transfer requires active remodeling by factors present in the nonactivated cytoplast. High levels of maturation promoting factor (MPF) activity are associated with this remodeling process which includes nuclear envelope breakdown (NEBD), premature chromosome condensation (PCC), and spindle formation. In this study, we examined the extent of nuclear remodeling in monkey somatic cell nuclear transfer (SCNT) embryos by monitoring the dynamics of lamin A/C appearance, as detected immunocytochemically, following fusion of donor cells with recipient cytoplasts. In the control, intracytoplasmic sperm injection (ICSI) fertilized embryos, lamin A/C was readily detected at the pronuclear stage but disappeared in early cleaving embryos only to reappear by the morula stage in association with the activation of the embryonic genome. We initially documented lack or incomplete NEBD and PCC in SCNT embryos in the form of retention of lamin A/C signal emanating from the donor nucleus. This observation was consistent with premature cytoplast activation due to the manipulation procedures. SCNT embryos produced by this approach typically arrested at the morula stage. Significant modifications in nuclear transfer protocols were then employed. Optimization of procedures resulted in robust NEBD and PCC, as indicated by loss of lamin A/C signal from the donor cell. Also, significant improvement of SCNT embryo development in vitro was observed, with a markedly improved blastocyst formation rate (21%). Several different fetal and adult somatic cell types screened as nuclear donors supported blastocyst development. SCNT blastocysts displayed a pattern of Oct-4 expression similar to that of sperm fertilized counterparts, indicative of efficient nuclear reprogramming. However, no pregnancies were established following a preliminary trial of 8 embryo transfers with 48 cloned embryos. Nevertheless, our results represent a breakthrough in efforts to produce cloned monkeys and should provide the resources required for the derivation of embryonic stem cells from SCNT blastocysts.


2006 ◽  
Vol 18 (2) ◽  
pp. 131
Author(s):  
K. Kaneyama ◽  
S. Kobayashi ◽  
S. Matoba ◽  
Y. Hashiyada ◽  
K. Imai ◽  
...  

Although many studies have been conducted on somatic cell nuclear transfer, there are only a few reports on cryopreservation of reconstructed embryos after nuclear transplantation. The objective of this study was to examine in vitro or in vivo development of vitrified blastocysts obtained by nuclear transfer. Nuclear transfer was carried out according to the procedure of Goto et al. (1999 Anim. Sci. J. 70, 243–245), and conducted using abattoir-derived oocytes and cumulus cells derived by ovum pickup from Holstein and Japanese Black cows. Embryos were vitrified as described by Saito et al. (1998 Cryobiol. Cryotech. 43, 34–39). The vitrification solution (GESX solution) was based on Dulbecco's PBS containing 20% glycerol (GL), 20% ethylene glycol (EG), 0.3 M sucrose (Suc), 0.3 M xylose (Xyl), and 3% polyethylene glycol (PEG). The blastocysts were equilibrated in three steps, with 10% GL, 0.1 M Suc, 0.1 M Xyl, and 1% PEG for 5 min (1); with 10% GL, 10% EG, 0.2 M Suc, 0.2 M Xyl, and 2% PEG for 5 min (2) and GESX solution (3). After transfer to GESX, equilibrated embryos were loaded to 0.25-mL straws and plunged into liquid nitrogen for 1 min. The vitrified blastocysts were warmed in water (20°C) and diluted in 0.5 M and 0.25 M sucrose for 5 min each. Equilibration and dilution procedures were conducted at room temperature (25–26°C). After dilution, the vitrified blastocysts were cultured in TCM-199 supplemented with 20% fetal calf serum and 0.1 mM β-mercaptoethanol at 38.5°C under gas phase of 5% CO2 in air. In Experiment 1, survival rates after vitrification were compared between the nuclear transfer and the IVF blastocysts. Survival rates of vitrified nuclear transfer blastocysts (n = 60, Day 8) at 24 and 48 h were 70.0% and 56.7%, respectively, and those of vitrified IVF blastocysts (n = 41) were 82.9% and 82.9%, respectively. There were no significant differences in survival rates at 24 and 48 h between the two groups. In Experiment 2, one (VIT-single) or two (VIT-double) vitrified and one (nonVIT-single) or two (nonVIT-double) nonvitrified reconstructed blastocysts per animal were transferred into Holstein dry cows. The result of Experiment 2 is shown in Table 1. This experiment demonstrated that the vitrification method in this study can be used for cloned embryo cryopreservation but the production rate should be improved. Table 1. Comparison of survival rates of vitrified or nonvitrified cloned embryos after transfer


2009 ◽  
Vol 21 (1) ◽  
pp. 129
Author(s):  
J. G. Zhao ◽  
J. W. Ross ◽  
Y. H. Hao ◽  
D. M. Wax ◽  
L. D. Spate ◽  
...  

Somatic cell nuclear transfer (SCNT) is a promising technology with potential applications in both agriculture and regenerative medicine. The reprogramming of differentiated somatic nuclei into totipotent embryonic state following NT is not efficient and the mechanism is currently unknown. However, accumulating evidence suggests that faulty epigenetic reprogramming is likely to be the major cause of low success rates observed in all mammals produced through SCNT. It has been demonstrated that increased histone acetylation in reconstructed embryos by applying histone deacetylases inhibitor (HDACi) such as trychostatin A (TSA) significantly enhanced the developmental competence in several species in vitro and in vivo. However TSA has been known to be teratogenic. Compared with TSA, Scriptaid is a low toxic but more efficient HDACi (Su GH et al. 2000 Cancer Res. 60, 3137–3142). The objectives of this study were: 1) to investigate and optimize the application Scriptaid to the NT using Landrace fetal fibroblast cells (FFCs) as donor; 2) investigate the effect of increased histone acetylation on the developmental competence of reconstructed embryos from NIH mini inbred FFCs in vitro and in vivo. The reconstructed embryos were treated with Scriptaid at different concentrations (0 nm, 250 nm, 500 nm and 1000 nm) after activation for 14 to 16 h. IVF embryos without treatment were produced as an additional control. Developmental rates to the 2-cell and blastocyst stage were determined. Developmental potential was determined by transferring Day 1 NT zygotes to the oviducts of surrogates on the day of, or one day after, the onset of estrus. Experiments were repeated at least 3 times and data were analyzed with chi-square tests using SAS 6.12 program (SAS institute, Inc., Cary, NC, USA). The percentage blastocyst of cloned embryos using Landrace FFCs as donors treated with 500 nm Scriptaid was the highest and was significantly higher than untreated group (25% v. 11%, P < 0.05). Percent cleaved was not different among four treatment groups. We used 500 nm Scriptaid for 14 to 16 h after activation for all subsequent experiments. Developmental rate to the blastocyst stage was significantly increased in cloned embryos derived from NIH mini inbred FFCs after treating with Scriptaid (21% v. 9%, P < 0.05), while the blastocyst rate in IVF group was 30%. Embryo transfer (ET) results showed that 5/6 (Transferred embryos No. were 190, 109, 154, 174, 152, and 190, respectively) surrogates (83%) became pregnant resulting in 2 healthy piglets from 2 litters (recipients received 190 and 154 embryos, respectively) in the Scriptaid treatment group, while no pregnancies were obtained in the untreated group from 5 ET (Embryos transferred No. are 140, 163, 161, 151 and 151, respectively). These results suggest that 500 nm Scriptaid treatment following activation increase both the in vitro and in vivo development of porcine SCNT embryos from NIH mini inbred FFCs and the hyperacetylation might actually improve reprogramming of the somatic nuclei after NT. Funding from the National Institutes of Health National Center for Research Resources RR018877.


2011 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
J. Lee ◽  
J. Park ◽  
Y. Chun ◽  
W. Lee ◽  
K. Song

Study for equine somatic cell nuclear transfer (SCNT) is an attractive field for research, but it has not been a major field of study because it is hard to obtain a sufficient number of ovaries and it takes a lot of time and effort for the recovery of oocytes matured in vivo by ovum pickup. It was reported that the bovine cytoplast could support the remodelling of equine donor cells (Zhou et al. 2007 Reprod. Domest. Anim. 42, 243–247). The objectives of this study are 1) to monitor the early events of equine SCNT by interspecies SCNT (isSCNT) between bovine cytoplast and equine donor cell, and 2) to investigate the developmental competence of isSCNT embryos. Bovine oocytes were recovered from the follicles of slaughtered ovaries, and matured in TCM-199 supplemented with 10 mU mL–1 FSH, 50 ng mL–1 EGF, and 10% FBS at 39°C under 5% CO2 in air for 22 h. Fibroblasts derived from bovine or equine skin tissues were synchronized at G0/G1 stage by contact inhibition for 72 h. After IVM, oocytes with polar body were enucleated and electrically fused with equine or bovine skin fibroblasts (1.0 kV cm–1, 20 μs, 2 pulses). Fused couplets were activated with 5 μM ionomycin for 4 min followed by 5 h culture in 10 μg mL–1 cycloheximide (CHX) and/or 2 mM 6-DMAP, and cultured in modified synthetic oviduct fluid (mSOF) at 39°C under 5% CO2, 5% O2, and 90% N2 for 7 days. All analyses were performed using SAS (version 9.1; SAS Institute, Cary, NC, USA). The cleavage rate of isSCNT embryos derived from equine cell was not different (252/323, 78.7%; P = 0.94) from that of SCNT embryos derived from bovine cell (230/297, 79.2%). However, the rate of isSCNT embryos developed to over 8-cell stage was lower (3.3%; P < 0.0001) than that of bovine SCNT embryos (39.4%), and total cell number of isSCNT embryos developed to over 8-cell stage was lower (17.5, n = 12; P < 0.0001) than that (80.8, n = 110) of bovine SCNT embryos. Also, the rate of blastocyst formation of isSCNT embryos (0/323; 0.0%) was lower (P < 0.0001) than that of bovine SCNT embryos (83/297; 29.3%). Meanwhile, reconstructed oocytes for isSCNT were fixed at 8 h after activation to investigate the formation of pseudo-pronucleus (PPN) after post-activation treatment with CHX or CHX+6-DMAP. The ratio of oocytes with single PPN after treatment with CHX+6-DMAP (26/35; 74.3%) was not different (P = 0.63) from that of oocytes treated with CHX (24/36; 68.1%). Although isSCNT embryos derived from bovine cytoplast and equine donor cell could not develop to more than the 16-cell stage, it is believed that the results of this isSCNT study could be used for the preliminary data regarding the reprogramming of donor cell in equine SCNT.


Sign in / Sign up

Export Citation Format

Share Document