58 HISTONE DEACETYLASES INHIBITOR, SCRIPTAID, IS BENEFICIAL TO THE REPROGRAMMING OF SOMATIC NUCLEI FOLLOWING NUCLEAR TRANSFER

2009 ◽  
Vol 21 (1) ◽  
pp. 129
Author(s):  
J. G. Zhao ◽  
J. W. Ross ◽  
Y. H. Hao ◽  
D. M. Wax ◽  
L. D. Spate ◽  
...  

Somatic cell nuclear transfer (SCNT) is a promising technology with potential applications in both agriculture and regenerative medicine. The reprogramming of differentiated somatic nuclei into totipotent embryonic state following NT is not efficient and the mechanism is currently unknown. However, accumulating evidence suggests that faulty epigenetic reprogramming is likely to be the major cause of low success rates observed in all mammals produced through SCNT. It has been demonstrated that increased histone acetylation in reconstructed embryos by applying histone deacetylases inhibitor (HDACi) such as trychostatin A (TSA) significantly enhanced the developmental competence in several species in vitro and in vivo. However TSA has been known to be teratogenic. Compared with TSA, Scriptaid is a low toxic but more efficient HDACi (Su GH et al. 2000 Cancer Res. 60, 3137–3142). The objectives of this study were: 1) to investigate and optimize the application Scriptaid to the NT using Landrace fetal fibroblast cells (FFCs) as donor; 2) investigate the effect of increased histone acetylation on the developmental competence of reconstructed embryos from NIH mini inbred FFCs in vitro and in vivo. The reconstructed embryos were treated with Scriptaid at different concentrations (0 nm, 250 nm, 500 nm and 1000 nm) after activation for 14 to 16 h. IVF embryos without treatment were produced as an additional control. Developmental rates to the 2-cell and blastocyst stage were determined. Developmental potential was determined by transferring Day 1 NT zygotes to the oviducts of surrogates on the day of, or one day after, the onset of estrus. Experiments were repeated at least 3 times and data were analyzed with chi-square tests using SAS 6.12 program (SAS institute, Inc., Cary, NC, USA). The percentage blastocyst of cloned embryos using Landrace FFCs as donors treated with 500 nm Scriptaid was the highest and was significantly higher than untreated group (25% v. 11%, P < 0.05). Percent cleaved was not different among four treatment groups. We used 500 nm Scriptaid for 14 to 16 h after activation for all subsequent experiments. Developmental rate to the blastocyst stage was significantly increased in cloned embryos derived from NIH mini inbred FFCs after treating with Scriptaid (21% v. 9%, P < 0.05), while the blastocyst rate in IVF group was 30%. Embryo transfer (ET) results showed that 5/6 (Transferred embryos No. were 190, 109, 154, 174, 152, and 190, respectively) surrogates (83%) became pregnant resulting in 2 healthy piglets from 2 litters (recipients received 190 and 154 embryos, respectively) in the Scriptaid treatment group, while no pregnancies were obtained in the untreated group from 5 ET (Embryos transferred No. are 140, 163, 161, 151 and 151, respectively). These results suggest that 500 nm Scriptaid treatment following activation increase both the in vitro and in vivo development of porcine SCNT embryos from NIH mini inbred FFCs and the hyperacetylation might actually improve reprogramming of the somatic nuclei after NT. Funding from the National Institutes of Health National Center for Research Resources RR018877.

2007 ◽  
Vol 19 (1) ◽  
pp. 168
Author(s):  
V. Zakhartchenko ◽  
F. Yang ◽  
R. Hao ◽  
E. Wolf

Epigenetic status of the genome of a donor nucleus is likely to be associated with the developmental potential of cloned embryos produced by somatic cell nuclear transfer (SCNT). Prevention of epigenetic errors by manipulation of the epigenetic status of donor cells is expected to result in improvement of cloning efficiency. In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Ali/Bas) into metaphase II (MII) oocytes and analyzed the levels of histone H3K9 acetylation in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with one or two blastomeres from in vitro-fertilized or parthenogenetic embryos. Histone acetylation in donor cells and cloned embryos was detected by anti-acH3K9 antibody using Western immunoblot analysis or immunochemistry, respectively. Data were analyzed by chi-square (developmental rates) or Student-Newman-Keuls (histone acetylation) test. The levels of acetylated histone H3K9 were higher in RCCs than in RFFs (P &lt; 0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC-cloned embryos induced a higher initial pregnancy rate as compared to RFF-cloned embryos (40% vs. 20%; P &lt; 0.05). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed; a live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly (P &lt; 0.05) increased the level of histone H3K9/14 acetylation and the proportion of nuclear transfer embryos developing to blastocyst (49% vs. 33% with non-treated RFF; P &lt; 0.05). The distribution of signals for acH3K9 in either group of cloned embryos did not resemble that in in vivo-fertilized embryos, suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo-derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and can be a useful epigenetic mark to predict efficiency of SCNT rabbits. This work was supported by the Bayerische Forschungsstiftung and by Therapeutic Human Polyclonals, Inc.


2005 ◽  
Vol 17 (2) ◽  
pp. 188
Author(s):  
J.G. Zhao ◽  
X.Y. Yang ◽  
Y. Huang ◽  
H.F. Liu ◽  
H. Li ◽  
...  

The objective of this study was to determine the effects of genetic manipulation, cell type, and culture conditions on developmental potential of bovine nuclear transfer (NT) embryos. Ovum pickup (OPU) technology was developed to obtain the oocytes for NT. A total 4044 cumulus-oocyte complexes (COCs) were obtained during 492 OPU sessions, with an average of 8.2 COCs recovered each session. Cultured granulosa cells (CGC), bovine fetal (150 days) oviduct epidermic cells (FOEC), and adult ear skin fibroblasts (ASFC) were used as donor cells for NT and were transfected with the expression vector including human FIX coding sequence directed by goat β-casein promoter and neomycin gene. The cells were screened under 800 μg mL−1 G418 for 10–14 days until the apperance of a “mono-colony” of cells which were then picked. Each cell population was expanded by consecutive passage culture under 300 μg mL−1 G418 until used for NT, ensuring that the majority of cells were transgenic. Oocytes were enucleated at 20 h post-maturation and a single donor cell was transferred into the perivitelline space of a recipient oocyte. After fusion and activation, the reconstructed embryos were co-cultured with vero cells in B2 medium for 7 days. NT efficiency between primary granulosa cells (PGC) without in vitro culture and CGC, as well as among CGC, FOEC and ASFC that were transfected with exogenous DNA (named TCGC, TFOEC, TASFC, respectively), were compared (Table 1). Differences between groups were verified by chi-square test using SAS 6.12 (SAS Institute, Inc., Cary, NC, USA) program. CGCs presented a higher fusion rate (P < 0.01) for reconstructed embryos and higher development to the blastocyst stage for NT embryos than did PGC (67% vs. 54% and 41% vs. 21%, respectively). There were no significant differences (P > 0.05) in cleavage rate (65%, 71%, and 69%, respectively) and development to the blastocyst stage for NT embryos (36%, 30% and 40%, respectively) for TCGC, TFOEC, and TASFC. A total of 86 blastocysts were selected for transfer into uteri of 86 cows, resulting in 26 pregnancies (30%) at 60 days by ultrasound scanning. Among these, 12 cows remain pregnant and 14 have aborted. The results indicated that oocytes recovered from OPU can be successfully used for NT with development to the blasocyst stage. PGC, CGC, FOEC, and ASFC can all be used for generating transgenic cattle by NT, although this needs to be verified by the birth of live calves. Table 1. Nuclear transfer efficiency with various cell types This work was supported by the Chinese “863” High-Tech Plan Program (Grant No. 2002AA206201).


2005 ◽  
Vol 17 (2) ◽  
pp. 209
Author(s):  
J. Otsuka ◽  
H. Funabashi ◽  
T. Kono

Nuclear transplantation is an efficient means to investigate nucleo-cytoplasmic interactions of mammalian embryos during early development. A recent study has shown that the developmental potential of embryos is affected by the type of cytoplasm. The SAMP1/Yit mouse, an inbred strain that develops spontaneous chronic ileitis resembling Crohn's disease (Matsumoto S 1999 Bioscience Microflora 18, 1–9), has poor reproductive performance, and the developmental ability of embryos is low (unpublished data). Therefore we need to enhance productivity of the SAMP1/Yit mouse. Recently it was reported that cytoplasm of F1 mouse egg supported the development of embryos which have low developmental ability (Muggleton-Harris A et al. 1982 Nature 299, 460–462). In the present study, we examined the influences of the nucleus and cytoplasm on the development of reconstructed embryos in vitro and in vivo, using reciprocal nuclear transplantation between SAMP1/Yit and B6P1F1 (C57BL/6J × SAMP1/Yit) mouse embryos. We evaluated the developmental ability of reconstructed embryos by the development rate into blastocysts in vitro and by the rate of offspring after transfer of blastocysts to recipient mice. Pronuclear transplantation was carried out as reported previously (McGrath J and Solter D 1983 Science 220, 1300–1302). Briefly, karyoplasts from one-cell SAMP1/Yit embryos were introduced into enucleated B6P1F1 zygotes (SAMP1/B6P1F1) and fused by addition of inactivated HVJ (2700 U L−1). The other group of reconstructed embryos (B6P1F1/SAMP1) was manipulated similarly. After fusion, reconstructed embryos were cultured in drops of KSOM medium for 120 h at 37°C in 5% CO2 in humidified air. Some reconstructed and control (unmanipulated) embryos that developed to the blastocyst stage were transferred to the uteri of recipient mice. Data were compared using chi-square test; differences were considered significant at P < 0.01. The development rate of [SAMP1/B6P1F1] embryos to the blastocyst stage was significantly (P < 0.01) higher (75.0%) than that of SAMP1/Yit controls (39.1%). The rate of offspring in [SAMP1/B6P1F1] was also significantly (P < 0.01) higher (47.5%) than that of SAMP1/Yit controls (22.1%). On the other hand, [B6P1F1/SAMP1] embryos showed low developmental potential compared to B6P1F1 control embryos. These results indicate that the source of the cytoplasm strongly influences the development of reconstructed embryos containing SAMP1/Yit karyoplasts. Table 1.


2004 ◽  
Vol 16 (2) ◽  
pp. 140
Author(s):  
Y. Echelard ◽  
E. Memili ◽  
S.L. Ayres ◽  
M. O'Coin ◽  
L.H. Chen ◽  
...  

The objective of this study was to compare the development to the blastocyst stage of reconstructed caprine nuclear transfer (NT) embryos derived from two sources of ova. In vivo oocytes were flushed from the oviduct of superovulated donors by exposing the reproductive tract via a small ventral laparotomy. In vitro oocytes were collected from ovaries supplied by an abattoir located in Purdue, IN. Oocytes were aspirated, cultured in maturation medium (M199 +10% goat serum, 3μgmL−1 LH, 3μgmL−1 FSH and 0.22mM sodium pyruvate), and shipped overnight (38°C, air). Donor cell preparation and NT procedures were as previously reported (Behboodi et al., 2001 Theriogenology 55, 254 abst). Donor cells were transfected female fetal fibroblasts that were synchronized by 4 days of serum starvation, followed by a 10-hour exposure to medium containing 10% FCS. Oocytes were enucleated, karyoplast-cytoplast couplets were reconstructed, fused and then activated simultaneously by a single electrical pulse. Couplets containing in vitro oocytes were incubated in the presence of 5μgmL−1 ionomycin after fusion. Fused couplets were co-cultured in TCM199 with 10% FCS and oviductal epithelial cells for 8–10 days (38°C, 5% CO2). Embryos that developed in vitro to the blastocyst stage were surgically transferred to recipients. Pregnancies were confirmed by ultrasonography. One live kid was delivered on Day 150 of gestation via elective C-section. Southern blotting analysis confirmed that it was derived from the transgenic donor cell line. These experiments show that in vivo matured oocytes not only better support caprine NT embryo development to the blastocyst stage, but also can result in live birth (table). Although fusion and cleavage rates were similar in the two groups, development to the blastocyst stage was significantly higher (Student’s t-test) in the group utilizing in vivo-matured oocytes. In conclusion, this is the first live goat produced from goat NT blastocysts developed in vitro. This suggests that in vivo matured oocytes may be superior to oocytes developed in vitro for generating live animals from NT blastocysts. Table 1


2011 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
J. Y. Lee ◽  
S. G. Lee ◽  
E. J. Jung ◽  
S. H. Jeong ◽  
C. J. Yang ◽  
...  

Novel serum-free media (IVD101) has been shown to be effective for the production of in vitro-produced embryos for subsequent implantation into cows (Hoshi 2003 Theriogenology 59, 675–685). The objective of the present study was to determine whether serum-free embryo cultivation during preimplantation stage could be used for the production of bovine transgenic nuclear transfer embryos. Somatic cell nuclear transfer (SCNT) embryos were produced by using donor cells containing a vector to induce the production of human erythropoietin in cow's milk. αS1-casein was selected as the promoter to be used in this study through the specific promoter activity test, and enhanced green fluorescent protein(EGFP) gene was attached to the CMV promoter to allow observation of the donor cell during the experiment. Adult fibroblast cells were transfected with lipofectamine. After G418 selection, the transfected cells were injected to the enucleated oocytes, and injected embryos were accomplished by cell-to-cell fusion. These embryos were then activated with calcium ionomycin and 6-dimethylaminopurine. The reconstructed embryos were cultured in IVD101 and mSOF media at 38.5°C, in a 5% CO2, 5% O2, and 90% N2 atmosphere. Embryos were cultured for 4 days, followed by addition of FBS in case of mSOF media. On day-7, the developmental ability and the number of cells in the reconstructed embryos were determined. Statistical analysis of embryo development data was carried out using unpaired t-test, or ANOVA. There were no significant differences in the cleavage rate (69.6 ± 3.2% v. 64.5 ± 5.0%), blastocyst rate (18.7 ± 1.3% v. 22.0 ± 1.6%), and cell number (113.9 ± 7.5 v. 103.6 ± 7.9) between IVD101 and mSOF+FBS cultured embryos. These results indicated that serum-free media did not reduce the developmental competence of SCNT embryos compared with serum-supplemented media. Further studies are required to investigate whether this serum-free transgenic embryo cultivation could be used for developmental potential in terms of full-term development after embryo transfer.


Zygote ◽  
2008 ◽  
Vol 16 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Gang Zhang ◽  
Qing-Yuan Sun ◽  
Da-Yuan Chen

SummaryIn this study, nuclear transfer (NT) embryos were produced by using C57Bl/6 mouse morula blastomeres and Kunming mouse metaphase II (MII) oocytes as donors and recipients, respectively, to investigate the effects of sucrose treatment of MII oocytes with different concentrations on the manipulation time of NT, electrofusion and the in vitro and in vivo development of reconstructed embryos. The results demonstrated that: (i) when the oocytes were enucleated with 1, 2 and 3% sucrose treatment, respectively, the enucleating rates were not affected by the different sucrose concentrations, but the manipulation time had significant difference and the mean nuclear transfer manipulation times of every oocyte were 180 ± 10 s, 130 ± 10 s and 120 ± 10 s, respectively; (ii) different sucrose concentrations had no significant effects on the fusion rate and the in vitro developmental potential of the NT embryos (p > 0.05). Furthermore, 59 embryos were transplanted into the oviducts of two recipients. In the end, three dead full-term developed fetuses were obtained on 21 days post coitus (dpc). These results suggested that the mouse MII oocytes enucleated via sucrose treatment might be an alternative source for mouse cloning and could support the embryonic NT embryos developed to term in vivo.


Reproduction ◽  
2007 ◽  
Vol 133 (1) ◽  
pp. 219-230 ◽  
Author(s):  
Feikun Yang ◽  
Ru Hao ◽  
Barbara Kessler ◽  
Gottfried Brem ◽  
Eckhard Wolf ◽  
...  

The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres fromin vivofertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF,P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that inin vivofertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres fromin vivoderived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and may be a useful epigenetic mark to predict efficiency of SCNT in rabbits.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Á Martíne. Moro ◽  
I Lamas-Toranzo ◽  
L González-Brusi ◽  
A Pérez-Gómez ◽  
P Bermejo-Álvarez

Abstract Study question Does cumulus cell mtDNA content correlate with oocyte developmental potential in the bovine model? Summary answer The relative amount of mtDNA content did not vary significantly in oocytes showing different developmental outcomes following IVF What is known already Cumulus cells are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Previous studies have positively associated oocytés mtDNA content with developmental potential in both animal models and women. However, it remains debatable whether mtDNA content in cumulus cells could be used as a proxy to infer oocyte developmental potential. Study design, size, duration Bovine cumulus cells were allocated into three groups according to the developmental potential of the oocyte: 1) oocytes developing to blastocysts following IVF (Bl+Cl+), 2) oocytes cleaving following IVF but arresting their development prior to the blastocyst stage (Bl-Cl+), and 3) oocytes not cleaving following IVF (Bl-Cl-). Relative mtDNA content was analysed in 40 samples/group, each composed by the cumulus cells from one cumulus-oocyte complex (COC). Participants/materials, setting, methods Bovine cumulus-oocyte complexes were obtained from slaughtered cattle and individually matured in vitro (IVM). Following IVM, cumulus cells were removed by hyaluronidase treatment, pelleted, snap frozen in liquid nitrogen and stored at –80 ºC until analysis. Cumulus-free oocytes were fertilized and cultured in vitro individually and development was recorded for each oocyte. Relative mtDNA abundance was determined by qPCR, amplifying a mtDNA sequence (COX1) and a chromosomal sequence (PPIA). Statistical differences were tested by ANOVA. Main results and the role of chance Relative mtDNA abundance did not differ significantly (ANOVA p &gt; 0.05) between the three groups exhibiting different developmental potential (1±0.06 vs. 1.19±0.05 vs. 1.11±0.05, for Bl+Cl+ vs. Bl-Cl+ vs. Bl-Cl-, mean±s.e.m.). Limitations, reasons for caution Experiments were conducted in the bovine model. Although bovine folliculogenesis, monoovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, caution should be taken when extrapolating these data to humans. Wider implications of the findings: The use of molecular markers for oocyte developmental potential in cumulus cells could be used to enhance success rates following single-embryo transfer. Unfortunately, mtDNA in cumulus cells was not found to be a good proxy for oocyte quality. Trial registration number Not applicable


2004 ◽  
Vol 16 (2) ◽  
pp. 154
Author(s):  
H.S. Park ◽  
M.Y. Lee ◽  
S.P. Hong ◽  
J.I. Jin ◽  
J.K. Park ◽  
...  

Recent techniques in somatic cell nuclear transfer (SCNT) have been widely used for animal research. In addition, SCNT techniques may allow for the rescue of endangered species. Despite efforts for wildlife preservation, however, some threatened or endangered wild animal species will likely become extinct. As a preliminary experiment of a series in wildlife research, we tried to identify an improved method for the production of more transferable NT embryos in goats. Mature donor animals of Korean native goats (20–25kg) were synchronized with a CIDR (type G; InterAg, New Zealand) vaginal implant for 10 days followed by a total of 8 twice daily injections of 70mg of FSH (Folltropine, London, Ontario, Canada) and 400IU of hCG (Chorulon, Intervet, Moxmeer, The Netherlands). Oocytes were then collected surgically by retograde oviduct flush or direct aspiration from ovarian follicles in vivo at 29–34h after hCG. Oocytes collected from follicles were matured in TCM-199 containing 10% FBS and hormones. Prepared ear skin cells from the goat were cultured in TCM-199 containing 10% FBS at 39°C, 5% CO2 in air, and confluent monolayers were obtained. Oocytes were enucleated and donor cells from serum starvation (0.5%) culture were fused through a single electric pulse (DC 2.36kvcm−1, 17μs), and then activated by a single electric pulse (AC 5vmm−1, 5s+DC 1.56kvcm−1, 30μs) or chemical treatment (5μgmL−1 ionomycin 5min−1, 1.9mM 6-DMAP/4h). Reconstructed oocytes were cultured in M16 medium with 10% goat serum (GS) for 6–7 days. Data were analyzed by chi-square test. In in vitro development, significantly (P&lt;0.05) more oocytes were cleaved (24/30, 80.0%) and developed (7/24, 29.2%) to morula or blastocyst stage, respectively, in NT oocytes activated by Iono + DMAP compared to electric stimulated oocytes (2/21, 40.0%; 0/2, 0%). There was a significant difference in in vitro development of NT embryos by the method of oocyte collection. Cleavage rate was higher (P&lt;0.05) in NT embryos from in vivo oocytes (23/28, 82.1%) than in in vitro matured oocytes (19/35, 54.3%), and further development to morula or blastocyst was also significantly (P&lt;0.05%) higher in NT embryos from in vivo oocytes (7/23, 30.4%) than in NT embryos from in vitro matured oocytes (0/19, 0%). When we compared NT embryos to parthenotes, developmental rate was not significantly different between NT embryos and parthenotes. These results strongly suggest that the in vivo oocytes will have superior developmental potential to oocytes matured in vitro. Table 1 Effect of different oocyte source on in vitro development following caprine SCNT


2020 ◽  
Author(s):  
Vera A van der Weijden ◽  
Meret Schmidhauser ◽  
Mayuko Kurome ◽  
Johannes Knubben ◽  
Veronika L Flöter ◽  
...  

Abstract Background: The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts.Results: In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation, tRNA charging, and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, signaling of Rho family GTPases, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts.Conclusions: Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.


Sign in / Sign up

Export Citation Format

Share Document