188 EFFECT OF TRANSFER OF FROZEN-THAWED IVF EMBRYOS ON PREGNANCY IN REPEAT-BREEDER INSEMINATED OR NON-INSEMINATED HOLSTEIN CATTLE

2006 ◽  
Vol 18 (2) ◽  
pp. 202 ◽  
Author(s):  
O. Dochi ◽  
M. Tanisawa ◽  
S. Goda ◽  
H. Koyama

Repeat-breeding is one of the important factors that affect dairy management. The objective of this study was to investigate the effect of transfer of frozen–thawed IVF embryos on pregnancy in repeat-breeder Holstein cattle. Cumulus–oocyte complexes (COCs) were collected by aspiration of 2–1-mm follicles from ovaries obtained at a local abattoir. COCs were matured for 20 h in TCM-199 supplemented with 5% calf serum (CS) and 0.02 mg/mL of FSH at 38.5°C under a 5% CO2 atmosphere in air. Matured oocytes were inseminated with spermatozoa of 5 × 106/mL in BO solution (Brackett and Oliphant 1975 Biol. Reprod. 12, 260–274) containing 10 mM hypotaurine and 4 units/mL heparin. After 18 h of gamete co-culture, presumptive zygotes were cultured in CR1aa (Rosenkrans et al. 1991 Theriogenology 35, 266) supplemented with 5% CS for 8 days at 38.5°C under 5% CO2, 5% O2, 90% N2 atmosphere in air. After in vitro fertilization, Day 7 and Day 8 blastocysts were frozen in 1.5 M ethylene glycol (EG) in Dulbecco's PBS (DPBS) supplemented with 0.1 M sucrose and 20% CS. Embryos were transferred into a freezing medium, loaded into 0.25-mL straws, and allowed to stand for 15–20 min for equilibration. The straws were then plunged into a −7°C methanol bath of a programmable freezer for 1 min, seeded at −7°C, maintained at −7°C for 15 min, cooled to −30°C at the rate of −0.3°C/min, and then plunged into liquid nitrogen. Recipient animals (43 heifers, 131 cows) included those that did not conceive after being artificially inseminated (AI) 3 to 15 times. The frozen–thawed IVF embryos were directly transferred to the recipient animals 7 days after estrus or AI. Pregnancy rates were analyzed by chi-square test. The results are presented in Table 1. There were no significant differences in the pregnancy rates between treatments. However, a slightly higher pregnancy rate was achieved by embryo transfer after AI. These results suggest that embryo transfer may increase the pregnancy rate in repeat-breeder Holstein cattle. Table 1. Pregnancy rates after transfer of IVF frozen–thawed embryos in repeat-breeder Holstein cattle

2007 ◽  
Vol 19 (1) ◽  
pp. 297
Author(s):  
S. Li ◽  
W. Yu ◽  
J. Fu ◽  
Y. Bai ◽  
F. Jin ◽  
...  

Data collected from commercial embryo transfer programs in 63 farms in China during June 2002 to December 2005 was analyzed to examine the effects of various factors (biopsy, freezing, sample size, embryo development and quality, in vitro culture, and recipient quality) on pregnancy rates of in vivo-biopsied embryos. Embryos were flushed from superovulated dairy cattle and subjected to a biopsy for sexing determination using protocols and sexing kits supplied by AB Technology Ltd. Fresh embryos were implanted on the same day or frozen with AG freeze medium (AB Technology Ltd., Pullman, WA, USA) for later transfer. Recipients were synchronized with CIDA + PG protocols. Embryos were cultured in 6-well dishes containing 1.3 mL of holding medium (AB Technology Ltd.) in each well at room temperature (20–25�C) for examination of embryo survival in vitro. The chi-square test was used in statistic analysis. The implantation of fresh embryos after biopsy did not affect pregnancy rates (49.6%, 257/518) compared to that of non-biopsied fresh and frozen–thawed embryo groups (52.9%, 47/140 and 46.6%, 177/380, respectively). However, for biopsied embryos subjected to frozen and thawed procedures before implantation, particularly for those subjected to the removal of a larger biopsy, a reduced pregnancy rate was observed (41.8%, 297/710; P < 0.01). Pregnancy rates among biopsied embryos at 3 different development stages (morula-early blastocyst, blastocyst, and expanded blastocyst) were not different. Similar results were found between embryo groups of grade 1 and 2. A significant decrease in pregnancy rate (0/10) was observed with embryos held in vitro for a longer period of time (>5 h), suggesting detrimental effects of in vitro conditions on embryo survival. The highest pregnancy rate (68.0%) was observed in recipients synchronized for the first time before being implanted with biopsied embryos. Significant decreases in such rates were found in recipients synchronized for the second or third times or those with an abortion history at the first or second synchronization-implantation treatment (P < 0.01). Better pregnancy rates (45.6%, 41/90; 46.1%, 76/165; and 45.5%, 5/11) were obtained for recipients implanted with biopsied embryos at Days 7.5, 8.0, and 8.5 post-heat detection, respectively, compared to 16% at Day 7 (3/18, P < 0.05). It is concluded that mechanical treatment (cutting) does not reduce the survival of biopsied embryos; however, cryopreservation reduces their ability to survive in vivo. The analyses also suggest that holding embryos in vitro should not be longer than 5 h unless more favorable in vitro conditions can be provided. To achieve better results of implantation of biopsied embryos, embryo transfer should be performed during 7.5–8.5 days post-estrus, and the healthy recipients synchronized for the first time should be used.


2010 ◽  
Vol 22 (1) ◽  
pp. 301
Author(s):  
B. G. Moura ◽  
J. Almeida ◽  
F. L. Lima ◽  
G. Balbi ◽  
R. Calmerani ◽  
...  

The aim of the work was to study the effects of year period, technical team, breed, beef cattle and dairy cattle on the pregnancy rates in fresh embryos used in bovine transfer of IVF programs. The study was carried out at the fertilization laboratory In Vitro Nyltta Britto de Carvalho, in partnership with In Vitro Brazil, located at the Boa Vista farm, Barra do Pirai, during August 2007 to September 2008, seeking subsidies to improve the use of the technique in the field. During that period, aspirations and inovulations in 3 different periods I (August to December), II (January to April), and III (May to September) were carried out. The jobs were accomplished by 9 technical teams (A, B, C, D, E, F, G, H, and I) rendering services to the laboratory, by working with 2 beef breeds (Brahman and Nelore) and 3 dairy breeds (Gir, Girolando, and Holstein). The different breed receivers were synchronized, and in general, from 6 to 8 days after heat, they received embryo transfer, the cervical way, under low epidural anesthesia, where each female received 1 fresh embryo of IVF. All cows were submitted to gestation diagnosis by rectal palpation and ultrasonography, in general, 42 days after embryo transfer. The numbers of embryo transferred and pregnancy rates were submitted to the chi-square test, which presented significant differences (P < 0.05). There were pregnancy rates of 36.25%a (n = 960), 39.83%a (n = 1180), and 32.59%b (n = 919) in the I, II, and III periods, respectively. Among the 9 technical teams, there were verified pregnancy rates (%) of 33.51d (n = 1313), 30.30d (n = 330), 35.00cd (n = 405), 39.24cd (n = 1060), 59.25a (n = 7), 33.33d (n = 24), 53.57bc (n = 28), 43.31c (n = 157), and 58.33ab (n = 12) for A, B, C, D, E, F, G, H, and I teams, respectively. Among breeds there were rates (%) of 36.89ab (n = 412), 34.68b (n = 1286), 35.13ab (n = 74), 38.94a (n = 1140), and 37.80ab (n = 82) for Brahman, Nelore, Gir, Girolando, and Holstein, respectively. In the study, pregnancy rates (%) of 35.21b (n = 1698) in beef cattle and 38.65a (n = 1296) in dairy cattle were observed. The differences in pregnancy rates with respect to the evaluated factors, may be explained by individual, breed, and nutritional variations of the animals. There are few data in the literature with results on the embryo transfer use of IVF bovine under field conditions.


2019 ◽  
Vol 31 (1) ◽  
pp. 181
Author(s):  
G. Gamarra Lazo ◽  
D. Di Scala ◽  
S. Maunas ◽  
R. Chaubet ◽  
S. Lacaze

We previously demonstrated the success of in vitro embryo production (IVP) in Lidia breed cattle (Gamarra Lazo et al. 2017 Reprod. Fertil. Dev. 30, 187). As in other species, the success of IVP is linked to the birth of calves from this technique. In the Lidia breed, an important factor to consider is the use of Lidia recipients in order to keep the temperament characteristic of this breed to next generations. The aim of the study was to produce ovum pickup (OPU)-IVP calves in the Lidia breed and to assess the effects of recipient and embryo related factors (status of the recipients; development stage of IVF embryos) on pregnancy rate following embryo transfer. Ovum pickup-IVP embryos from Lidia breeds were produced by a standard protocol (Gamarra Lazo et al. 2017 Reprod. Fertil. Dev. 30, 187). Numbers of blastocysts and expanded blastocysts were recorded on Day 7. A total of 27 blastocysts (B) and 34 expanded blastocysts (EB) of excellent quality (grade 1 according to IETS classification) were selected for fresh transfer. All embryos were transferred to Lidia breed recipients (heifers or cows) by a single operator under similar environmental and field conditions. Recipients were synchronized by subcutaneous insertion of an ear implant of 3.3mg of Norgestomet (Crestar®, MSD, Courbevoie, France) for 9 days. Two days before implant withdrawal, 0.5mg of Cloprostenol (Estrumate®, MSD) was injected. No oestrous detection was performed and synchronized females were selected as recipients when they presented a well developed corpus luteum at Day 9 after implant withdrawal (Day 6 to 7 after the expected oestrus). Blood samples were collected from recipients to determine pregnancy status using the bovine pregnancy associated glycoprotein (Idexx, Westbrook, ME, USA) 50-60 days after transfer. Pregnancy rates were analysed by chi-square analysis to compare results between heifers and cows and between B and EB embryo stages. The overall pregnancy rate after transfer of IVP fresh embryos from Lidia breed averaged 41.0% (n=25). A higher pregnancy rate was achieved in cows compared to heifers [51.2% (21/41) v. 20.0% (4/20) respectively, P&lt;0.05]. There was no difference in pregnancy rate between grade 1B [37% (10/27)] and EB [44.1% (15/34)] embryos (P&gt;0.05). Surprisingly, these results suggest that Lidia breed cows are the best recipients for OPU-IVP embryos. This may be related to the limited feasibility of manipulating the uterine horn during the embryo transfer in Lidia breed heifers, which have a low weight (less than 280kg) and present a narrow rectum diameter. It has been also observed that the cervix is very thin and difficult to cross, thus increasing the stress and potentially inflammatory and immune products secretion. Development stage of embryos did not affect pregnancy rate. To our knowledge, no OPU-IVP Lidia breed calves have been reported previously following transfer into Lidia breed recipients. In the current work, 13 OPU-IVP Lidia breed calves were born. Therefore, we confirmed the possibility of applying OPU-IVP and embryo transfer techniques in this breed within a genetic program.


2004 ◽  
Vol 16 (2) ◽  
pp. 206 ◽  
Author(s):  
S. Aoki ◽  
S. Murano ◽  
M. Miyamura ◽  
S. Hamano ◽  
Y. Terawaki ◽  
...  

The objective of this study was to analyze factors affecting the pregnancy rates after transfer of IVF-derived Japanese Black embryos. Holstein cows and heifers (n=7250) were selected as recipients, and embryo transfers were performed for 3yr (between 1998 and 2000). The IVM-IVF procedure was performed according to a method previously described (Hamano S and Kuwayama M 1993 Theriogenology 39, 703–712). IVF-derived embryos that developed into expanded blastocysts (grade 1, manual of IETS) after 7 to 8 days (insemination=Day 0) were used for this study. Some of these embryos were frozen in TCM-199 supplemented with 1.4M glycerol, 20% calf serum, and 0.25M sucrose. The embryos were seeded at −6°C, held at −6°C for 10min, and then cooled to −25°C at a rate of 0.33°Cmin−1. Frozen embryos were thawed in a 30 to 35°C water bath after 10s of air thawing. Fresh (n=3952) or frozen-thawed (n=3298) embryos were nonsurgically transferred to recipients on Days 6 to 9 of the estrous cycle. Data collected at the time of embryo transfer included recipient parity (cow or heifer), whether recipient estrus was natural or synchronized with PGF2α, cloprostenol or CIDR, methods of estrous confirmation (showing standing heat, rectal palpation of ovary without standing heat, or showing only mucous vulvular discharge), number of examinations of the CL by palpation per rectum (twice on the day before embryo transfer and the day of embryo transfer, or once on the day of embryo transfer), type of embryos (fresh or frozen), and day of the estrous cycle at the time of embryo transfer. CATMOD procedures of SAS were used to determine the factors affecting the pregnancy rate. Overall pregnancy rates were 37.3% (n=2704). Whether recipient estrus was natural or synchronized and the type of embryos did not influence the pregnancy rates. Heifers had significantly higher pregnancy rates than cows (44.0% v. 33.0%, respectively, P&lt;0.05). Pregnancy rates among the subset of heifers and cows showing standing heat were significantly higher than those showing only mucous vulvular discharge (39.5% v. 33.5%, respectively, P&lt;0.05). Examining the CL twive had a significantly higher pregnancy rate than did a single examination of the CL (41.1% v. 35.6%, respectively, P&lt;0.05). Pregnancy rate on Day 8 (38.4%, 1358/3533) of the estrous cycle at the time of embryo transfer was significantly higher than on Days 6 (27.7%, 23/83) and 7 (36.2%, 1235/3408) (P&lt;0.05), and the pregnancy rate on Day 6 of the estrous cycle at the time of embryo transfer tended to be lower than on Day 9 (38.9%, 88/226) (P&lt;0.08). These results demonstrate that confirming standing heat, performing CL examination twice before embryo transfer, freezing high quality embryos, and performing embryo transfers on Day 8 resulted in an improved pregnancy rate for the transfer of IVF-derived embryos.


2016 ◽  
Vol 7 (2) ◽  
pp. 52-57 ◽  
Author(s):  
KK Gopinathan ◽  
Avani Pillai ◽  
G Parasuram ◽  
Fessy L Thalakottoor

ABSTRACT Aim To evaluate the role of hysteroscopic endometrial injury and its timing prior to embryo transfer in patients undergoing IVF (in vitro fertilization) treatment. Materials and methods A total of 133 patients who underwent hysteroscopy at CIMAR Fertility Centre at Kochi, between January 2013 and December 2014, and had normal hysteroscopic findings were enrolled for the study. These women subsequently underwent IVF treatment and were evaluated in three groups based on the timing of hysteroscopy before embryo transfer: Group I – hysteroscopy performed 50 days or less before embryo transfer (n = 54), group II – hysteroscopy performed between 51 days and 6 months of embryo transfer (n = 45), and group III – hysteroscopy performed more than 6 months before embryo transfer (n = 34). Results The implantation rates were 21.8, 22.6, and 21.6% in groups I, II, and III respectively. Overall pregnancy rates were 44.4, 48.9, and 44.1%. Clinical pregnancy rates (CPR) were 40.7, 46.7, and 44.1% and live birth rates (LBR) were 30, 29, and 26% in groups I, II, and III respectively. Thus the implantation rate, overall pregnancy rate, and CPR were not significantly different in the three groups. Conclusion Hysteroscopic endometrial injury prior to IVF does not improve the pregnancy rate in patients with normal hysteroscopic findings. Clinical significance Due to the lack of definitive evidence regarding the role of hysteroscopic endometrial injury, ideal technique, and its timing prior to embryo transfer, it is necessary to evaluate the role of endometrial injury as a fertility treatment in women undergoing assisted reproductive technology (ART) cycles, as well as to present it in a way that supports clinical practice. At this stage, there is little evidence to support hysteroscopic endometrial injury prior to embryo transfer as a standard of care, and its use should be limited to selected cases after careful deliberation between the medical team and patient. How to cite this article Pillai A, Parasuram G, Thalakottoor FL, Gopinathan KK. Evaluation of the Role of Hysteroscopic Endometrial Injury and Its Timing Prior to in vitro Fertilization Treatment. Int J Infertil Fetal Med 2016;7(2):52-57.


2010 ◽  
Vol 22 (1) ◽  
pp. 212
Author(s):  
N. Mucci ◽  
F. Hozbor ◽  
G. G. Kaiser ◽  
E. Sanchez ◽  
R. H. Alberio

Although slow freezing is the method of choice to cryopreserve in vivo-produced ovine embryos, vitrification has became an alternative procedure mostly developed for in vitro-produced bovine embryos. The aim of this work was to compare pregnancy rates after cryopreservation of in vivo-produced ovine embryos with slow freezing or open pulled straw (OPS) vitrification method. Ewes were synchronized using intravaginal sponges containing 60 mg of medroxyprogesterone acetate for 14 d. Superovulation was performed using a total dose of 176 IU of ovine FSH (Ovagen), in 6 decreasing doses (i.m.) from Day 12 to 14 of treatment (Day 0 = sponge placing). Ewes were hand mated with 2 rams of proven fertility. Embryos were recovered 6 days after estrous detection by surgical procedure, evaluated under stereomicroscope, and randomly assigned to the cryopreservation treatments. Slow freezing was performed in D-PBS supplemented with 1.78 M ethylene glycol, 0.1 M sucrose, 4 mg mL-1 of BSA, and 20% serum. Embryos were loaded into 0.25-mL plastic straws and placed into a -7°C methanol bath chamber. After seeding embryos were cooled to -35°C at a rate of 0.5°C/min and then stored in liquid nitrogen. Thawing was performed by placing the straws in a 30°C water bath for 30 sec. Vitrification was performed by using the OPS method (Vajta et al. 1998) with minor modifications. Embryos were incubated in D-PBS supplemented with 1.78 M ethylene glycol, 1.3 M DMSO for 3 min and then transferred for 25 s in vitrification solution of D-PBS with 3.56 M ethylene glycol, 2.6 M DMSO, and 0.5 M sucrose, loaded in a 1 mL drop in the OPS, and immediately submerged into and stored in liquid nitrogen. Warming was performed in D-PBS plus 0.25 M sucrose for 5 min and then into D-PBS plus 0.15 M sucrose for another 5 min. Before embryo transfer, the presence of corpus luteum (CL) was detected by laparoscopic examination. One embryo per recipient was surgically transferred in the apical extreme of the uterine horn ipsilateral to the CL. Pregnancies were determined by ultrasonography 41 days after embryo transfer. Data were analyzed using the chi-square test. We found 47.8% pregnancy rate using slow freezing (11/23) and 43.5% pregnancy rate using OPS vitrification (10/23). Statistical differences were not detected (P = 0.09). We conclude that vitrification by OPS system, with minor modifications, is a suitable procedure for in vivo-produced ovine embryo cryopreservation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessio Paffoni ◽  
Marco Reschini ◽  
Valerio Pisaturo ◽  
Cristina Guarneri ◽  
Simone Palini ◽  
...  

Abstract Background Total fertilization failure represents a particularly frustrating condition for couples undergoing in vitro fertilization. With the aim of reducing the occurrence of total fertilization failure, intracytoplasmic sperm injection (ICSI) has become the first choice over conventional in vitro fertilization (IVF) procedures although evidence of improved results is still debated and its use in couples without male factor infertility is not recommended. Among the strategies potentially useful to promote the use of conventional IVF, we herein call attention to the late rescue ICSI, which consists in performing ICSI after 18–24 h from conventional insemination on oocytes that show no signs of fertilization. This treatment has however been reported to be associated with a low success rate until recent observations that embryos derived from late rescue ICSI may be transferred after cryopreservation in a frozen-thawed cycle with improved results. The aim of the present study was to assess whether frozen embryos deriving from rescue ICSI performed about 24 h after conventional IVF may represent a valuable option for couples experiencing fertilization failure. Methods A systematic review on the efficacy of late rescue ICSI was performed consulting PUBMED and EMBASE. Results Including twenty-two original studies, we showed that clinical pregnancy rate per embryo transfer and implantation rate obtainable with fresh embryo transfers after rescue ICSI are not satisfactory being equal to 10 and 5%, respectively. The transfer of cryopreserved rescue ICSI embryos seems to offer a substantial improvement of success rates, with pregnancy rate per embryo transfer and implantation rate equal to 36 and 18%, respectively. Coupling rescue ICSI with frozen embryo transfer may ameliorate the clinical pregnancy rate for embryo transfer with an Odds Ratio = 4.7 (95% CI:2.6–8.6). Conclusion Results of the present review support the idea that r-ICSI coupled with frozen embryo transfer may overcome most of the technical and biological issues associated with fresh transfer after late r-ICSI, thus possibly representing an efficient procedure for couples experiencing fertilization failure following conventional IVF cycles. Trial registration Prospero registration ID: CRD42021239026.


2005 ◽  
Vol 83 (2) ◽  
pp. 316-320 ◽  
Author(s):  
Hans G.I. van Weering ◽  
Roel Schats ◽  
Joseph McDonnell ◽  
Peter G.A. Hompes

2005 ◽  
Vol 17 (2) ◽  
pp. 276 ◽  
Author(s):  
J. Pryor ◽  
S. Romo ◽  
D.D. Varner ◽  
K. Hinrichs ◽  
C.R. Looney

In commercial bovine in vitro fertilization (IVF) companies, there is a continuous need to improve results. Efforts to maximize in vitro embryo production have included modifications in the use of sperm separation gradients. The development of commercially available sperm centrifugation gradients represents a new possibility of increasing the number of viable sperm that can be obtained from low concentration (fresh or frozen, sexed or unsexed) semen samples in order to improve the efficiency of the IVF system to make embryo production as efficient as possible. The objective of this study was to compare two different separation gradients, as follows: Group 1: Percoll (Sigma, St. Louis, MO, USA), in 45% and 90% gradients; Group 2: EquiPure (Nidacon, Gathenburg, Sweden), in top and bottom layers. Before and after separation, sperm were evaluated at 200× magnification for total motility, and then stained to assess viability at 400× with fast-green/eosin stain (Sigma). Sperm separation was performed using frozen/thawed semen from one bull. Semen was separated by centrifugation at 200g for 30 min in both density gradients. Results obtained from Groups 1 and 2 were compared by chi-square test. Sperm separation with Percoll yielded lower numbers of sperm (average sperm concentration after separation of 92 × 106, vs. 159 × 106 sperm/mL for EquiPure; P < 0.05) but resulted in higher motility (60% vs. 39%, respectively; P < 0.05) of separated sperm. Rates of live sperm cells were not significantly different between groups (69.5% vs. 70%, respectively; P > 0.1). These results indicate that the commercial separation medium EquiPure may be associated with higher sperm concentration levels but with lowered sperm motility when compared to Percoll for bovine sperm separation. However, Equipure provided similar percentages of live sperm when compared to Percoll, which is currently used in our laboratory.


Sign in / Sign up

Export Citation Format

Share Document