fertilization failure
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 55)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Birol Aydin ◽  
ULYANA DORFEYEVA ◽  
HALYNA STRELKO ◽  
TETIANA PISCHANA ◽  
OLGA CHAPLIA ◽  
...  

2021 ◽  
Vol 5 ◽  
pp. 95-100
Author(s):  
Karin Thüler ◽  
Wolf U. Blanckenhorn ◽  
Paul I. Ward ◽  
Stefan Lüpold ◽  
Luc F. Bussière

Female and male reproductive traits co-evolve through pre- and post-copulatory sexual selection and sexual conflict. Although males typically transfer many sperm during copulation, only a small proportion reach the fertilization site because females often actively or passively reduce sperm number in their reproductive tract. Males may transfer accessory substances to protect their ejaculates against female selective processes, which benefits males but can harm females. In turn, females may use accessory gland fluids to control paternity or sperm storage. Female yellow dung flies (Scathophaga stercoraria) have paired accessory glands that produce fluids involved in fertilization and egg laying. One proposed function for these fluids is spermicide. Alternatively, female accessory gland fluid may help keep sperm alive to avoid fertilization failure or encourage sperm competition. Using yellow dung flies, we investigated the interaction of female accessory gland fluid with sperm in vitro. Significantly more sperm remained alive when exposed to accessory gland fluid compared to buffer only (63% vs. 44%). We conclude that female accessory gland fluid in yellow dung flies can help nourish rather than kill male sperm, although selective nourishment of sperm is as consistent with cryptic female choice as is selective spermicide.


Author(s):  
Jiamin Jin ◽  
Xiaomei Tong ◽  
Yin-Li Zhang ◽  
Weijie Yang ◽  
Yerong Ma ◽  
...  

Abstract Purpose To study associations between novel WEE2 mutations and patients with fertilization failure or poor fertilization. Methods Thirty-one Chinese patients who underwent treatment with assisted reproductive technology and suffered from repeated (at least two times) total fertilization failure (TFF) or a low fertilization rate were enrolled. Genomic DNA was extracted from patients for whole-exome sequencing. Suspicious mutations were validated by Sanger sequencing. WEE2 protein levels in oocytes from affected patients were examined by immunofluorescence. Disruptive effects of mutations on WEE2 protein stability, subcellular localization, and kinase function were analyzed through western blotting, immunofluorescence, and flow cytometry in HeLa cells. Results Three of thirty-one (9.6%) enrolled patients had six compound heterozygous mutations of the WEE2 gene, and three of them were reported here for the first time (c.115_116insT, c.756_758delTGA, and c.C1459T). Oocytes from affected patients showed decreased WEE2 immunofluorescence signals. In vitro experiments showed that the mutant WEE2 gene caused reduced WEE2 protein levels or cellular compartment translocation in HeLa cells, leading to decreased levels of the phosphorylated Cdc2 protein. Compared with the wild-type WEE2 protein, the mutant WEE2 proteins were also found to have different effects on the cell cycle. Conclusion Three novel compound heterozygous WEE2 variants were found in patients with pronucleus formation failure. This study provides new evidence that WEE2 mutations result in loss of function, which could result in fertilization failure.


2021 ◽  
Vol 116 (3) ◽  
pp. e284
Author(s):  
Danielle Rebecca Tavares ◽  
Stephanie Cheung ◽  
Philip Xie ◽  
Zev Rosenwaks ◽  
Gianpiero D. Palermo

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessio Paffoni ◽  
Marco Reschini ◽  
Valerio Pisaturo ◽  
Cristina Guarneri ◽  
Simone Palini ◽  
...  

Abstract Background Total fertilization failure represents a particularly frustrating condition for couples undergoing in vitro fertilization. With the aim of reducing the occurrence of total fertilization failure, intracytoplasmic sperm injection (ICSI) has become the first choice over conventional in vitro fertilization (IVF) procedures although evidence of improved results is still debated and its use in couples without male factor infertility is not recommended. Among the strategies potentially useful to promote the use of conventional IVF, we herein call attention to the late rescue ICSI, which consists in performing ICSI after 18–24 h from conventional insemination on oocytes that show no signs of fertilization. This treatment has however been reported to be associated with a low success rate until recent observations that embryos derived from late rescue ICSI may be transferred after cryopreservation in a frozen-thawed cycle with improved results. The aim of the present study was to assess whether frozen embryos deriving from rescue ICSI performed about 24 h after conventional IVF may represent a valuable option for couples experiencing fertilization failure. Methods A systematic review on the efficacy of late rescue ICSI was performed consulting PUBMED and EMBASE. Results Including twenty-two original studies, we showed that clinical pregnancy rate per embryo transfer and implantation rate obtainable with fresh embryo transfers after rescue ICSI are not satisfactory being equal to 10 and 5%, respectively. The transfer of cryopreserved rescue ICSI embryos seems to offer a substantial improvement of success rates, with pregnancy rate per embryo transfer and implantation rate equal to 36 and 18%, respectively. Coupling rescue ICSI with frozen embryo transfer may ameliorate the clinical pregnancy rate for embryo transfer with an Odds Ratio = 4.7 (95% CI:2.6–8.6). Conclusion Results of the present review support the idea that r-ICSI coupled with frozen embryo transfer may overcome most of the technical and biological issues associated with fresh transfer after late r-ICSI, thus possibly representing an efficient procedure for couples experiencing fertilization failure following conventional IVF cycles. Trial registration Prospero registration ID: CRD42021239026.


Author(s):  
Meng Wang ◽  
Lixia Zhu ◽  
Chang Liu ◽  
Hui He ◽  
Cheng Wang ◽  
...  

Total fertilization failure (TFF) occurs in 1–3% of total intracytoplasmic sperm injection (ICSI) cycles and can reoccur in subsequent cycles. Despite the high success rate with the application of assisted oocyte activation (AOA), there is still a small number of couples who cannot obtain fertilized eggs after conventional calcium (Ca2+) ionophores-based ICSI-AOA. Six couples experiencing repeated TFF or low fertilization (<10%) after ICSI and conventional ICSI-AOA were enrolled in this study. Compared with the regular ICSI group and the conventional ICSI-AOA group, the new AOA method, a combination of cycloheximide (CHX) and ionomycin, can significantly increase the fertilization rate from less than 10 up to approximately 50% in most cases. The normal distribution of sperm-related oocyte activation factor phospholipase C zeta (PLCζ1) in the sperms of the cases indicated the absence of an aberrant Ca2+ signaling activation. The results of the whole-embryo aneuploidies analysis indicated that oocytes receiving the novel AOA treatment had the potential to develop into blastocysts with normal karyotypes. Our data demonstrated that CHX combined with ionomycin was able to effectively improve the fertilization rate in the majority of patients suffering from TFF. This novel AOA method had a potential therapeutic effect on those couples experiencing TFF, even after conventional AOA, which may surmount the severe fertilization deficiencies in patients with a repeated low fertilization or TFF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ziwen Xu ◽  
Guidong Yao ◽  
Wenbin Niu ◽  
Huiying Fan ◽  
Xueshan Ma ◽  
...  

Calcium is a crucial factor in regulating the biological behavior of cells. The imbalance of calcium homeostasis in cytoplasm will cause abnormal behavior of cells and the occurrence of diseases. In intracytoplasmic sperm injection (ICSI) cycle, the dysfunction of oocyte activation caused by insufficient release of Ca2+ from endoplasmic reticulum is one of the main reasons for repeated fertilization failure. Calcium ionophore (A23187) is a highly selective calcium ionophore, which can form stable complex with Ca2+ and pass through the cell membrane at will, effectively increasing intracellular Ca2+ levels. It has been reported that calcium ionophore (A23187) can activate oocytes and obtain normal embryos. However, there are few studies on unfertilized oocytes after calcium ionophore (A23187) rescue activation in ICSI cycle. The purpose of this study was to analyze the effects of calcium ionophore (A23187) rescue activation on the activation of unfertilized oocytes, embryonic development potential, embryonic development timing and chromosomal aneuploidy, and to compare and analyze the clinical data of patients with calcium ionophore (A23187) activation in clinical application. The results showed that a certain proportion of high-quality blastocysts with normal karyotype could be obtained after calcium ionophore (A23187) rescue activation of unfertilized oocytes, and it did not have a significant effect on the timing of embryo development. In clinical practice, direct activation with calcium ionophore (A23187) after ICSI was better than rescue activation the next day. In conclusions, the studies on the effectiveness and safety of calcium ionophore (A23187) rescue activation for oocytes with ICSI fertilization failure can enable some patients to obtain usable, high-quality embryos during the first ICSI cycle.


2021 ◽  
Author(s):  
Wenwen Liu ◽  
Guijun Yan ◽  
Ningyuan Zhang ◽  
Na Kong ◽  
Min Wu ◽  
...  

Abstract Purpose: To investigate the genetic cause of infertility in a female patient due to repeated fertilization failure.Methods: Whole exome sequencing was performed to obtain the candidate mutation. Sanger sequencing was used to identify the mutation of the proband and other family members. SIFT, Polyphen-2, and Mutation Taster were used to predict the pathogenicity of mutations. The online software Arpeggio and the mCSM online service were used to analyze the effect of the mutation on protein structure and stability. Results: We identified a novel homozygous missense mutation c.T1199A:p.L400Q (Leu400Gln) in WEE2 gene in a female proband with infertility caused by fertilization failure. Conclusions: We discovered a novel homozygous missense mutation c.T1199A:p.L400Q (Leu400Gln) of the WEE2 gene in an infertile female whose oocytes had undergone complete fertilization failure, either after ICSI or RICSI. Our findings extend the mutant spectrum of WEE2 , a genetic cause for fertilization failure, and provide a theoretical basis for clinical diagnosis of the pathogenic causes of infertility.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
E Seo. Pe. Yin

Abstract Study question Will artificial activation of oocytes alter the ploidy status of the resultant blastocysts? A sibling-oocytes pilot study Summary answer AOA-ICSI does not increase the risk of having aneuploidy blastocysts and can improve the fertilization rate in patients with sperm factor deficiency. What is known already Despite introducing ICSI as an aid to improve chances of fertilization, fertilization failure can still occur in 2–3% of ICSI cycles. Fertilization is a complex process triggered by a cascade of events following calcium (Ca2+) oscillations. Evidence suggests that the deficiency, localization or altered structure of the sperm-derived protein PLCζ in oocyte activation may be a reason for meiotic II arrest in the oocyte. Artificial oocyte activation has been proposed to compensate for the lack of calcium oscillation and resumes meiotic progression. There are however insufficient studies to determine its effect on the chromosomal status of the resultant blastocysts. Study design, size, duration This is a prospective, randomized study conducted at our Center from August-October 2020. A total of 20 couples intended for ICSI + Preimplatation Genetic Testing for Aneuploidy (PGT-A) cycles were recruited based on fulfilling one of the following criteria: 1) previous total fertilization failure (TFF), 2) history of low fertilization rate (<30%), 3) more than 2 cycles of failed IVF cycles (no implantation) 4) poor embryo development (no blastocysts formed) and 5) severe male factor. Participants/materials, setting, methods A total of 231 MII oocytes underwent randomization in a 1:1 ratio between AOA-ICSI and control group. All oocytes are subjected to ICSI treatment. Oocytes in the AOA-ICSI group are treated in 25μl droplets 10μM ready to use bicarbonate buffered calcium ionophore (Kitazato, Japan) for 15 minutes post-ICSI. The blastocysts were biopsied and subjected to PGT-A. Primary outcome was the aneuploidy rate and secondary outcomes were fertilization rate and blastocyst rate. Main results and the role of chance There were 11 out of 40 (27.5%) aneuploid blastocysts in the AOA-ICSI group and 7 out of 23 aneuploid blastocysts (30.4%) in the control group [odds ratio (OR) = 0.87; 95% confidence interval (CI) 0.28–2.68, p = 0.8040). There was no statistically significant difference between both groups. However, fertilization rate of the AOA- ICSI group was significantly higher than the fertilization rate in the control group (68.6% vs 49.6% respectively, OR = 2.22; 95% CI, 1.31–3.81, p = 0.0034). There were 40 blastocysts formed in the AOA-ICSI group and 23 blastocysts formed in the control group. It was found that the AOA-ICSI group yielded a higher blastocyst rate (49.4%) compared to the control group (41.1%) (OR = 1.40; 95% CI, 0.71 to 2.78, p = 0.3379) but the difference was not statistically significant. Limitations, reasons for caution The possibility of TE cells biopsied may not be representative of the whole blastocyst makes it possible to have false clinical data. The dosage and time were also not evaluated in this study as exposure time was found to be a critical factor of fertilization rate in a previous study. Wider implications of the findings: This study showed that AOA-ICSI does not increase the risk of having aneuploidy blastocysts and can improve the fertilization rate in patients with sperm factor deficiency. Additional studies involving a larger number of patients with more specific indication can further justify the benefits of AOA as a therapeutic application. Trial registration number NA


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
G Lópe. Ruiz ◽  
C Olmed. Illueca ◽  
M Bare. Gómez ◽  
S Roy. Bolea ◽  
L Aba. d. Velasco ◽  
...  

Abstract Study question Does Calcymicin improve reproductive outcomes of ICSI cycles in cases of fertilization failure and/or embryo blockage indications? Summary answer The application of the Calcymicin after ICSI improves reproductive outcomes, especially in cases with clinical indication of fertilization failure. What is known already According to the bibliography, deficiencies in the oocyte activation process frequently lead to failed ICSI cycles, and these can be corrected by increasing initial levels of calcium (Ca2+) in the oocyte using assisted oocyte activation techniques (AOA), such as the use of Ca2+ ionophores. Ca2+ Ionophores have been shown to trigger an initial Ca2+ spike in the ooplasm that activates Ca2+/Calmodulin dependent protein kinase II, which initiates the cascade of cellular events leading to oocyte activation. Previous results suggest that Ca2+ ionophore treatment can give live offspring after failed ICSI cycles. Study design, size, duration 270 oocytes collected from 17 patients who presented cycles with low fertilization rates and/or embryo blockage or poor quality embryos (according to ASEBIR’s embryo classification criteria) were retrospectively analyzed. Oocytes were divided into two groups, a control group that underwent conventional IVF/ICSI and another group that underwent an ICSI cycle with AOA. Study groups were defined according to clinical indications and subgroups according to AOA or control. All data were collected from 2017 until 2020. Participants/materials, setting, methods Among the 270 oocytes of the study sample, 142 belonged to the control group and 128 belonged to the AOA group. The AOA group oocytes were activated for 15 minutes immediately after ICSI using a prepared solution containing the Ca2+ ionophore A23187, CultActive© (Gynemed, Germany). Fertilization rate and type, blastocyst formation rate, blastocyst quality, embryo kinetics, and pregnancy rates were analyzed, all of them were compared to FIV/ICSI cycles without oocyte activation (control group). Main results and the role of chance In the analyses of the whole sample of oocytes, the AOA treatment gave a fertilization rate of 72.5%, which was significantly higher compared to 53.8% of the control cycles (p = 0.002). Good quality blastocysts and pregnancy rates were also significantly higher than the control (p = 0.01). In the group with an indication of fertilization failure, a significantly higher fertilization rate was recorded compared to the control (65% and 33%, respectively). A higher rate of abnormal embryos with three pronuclei was also found compared to the control (p < 0.001). There were no significant differences in blastocyst formation rates, quality, or embryo kinetics (p > 0.05). In the group with an indication of embryo blockage/poor embryo quality, a significantly higher rate of good quality blastocysts and lower blastulation time were recorded compared to the control (p < 0.05). Limitations, reasons for caution The safety of the AOA technique with Ca2+ ionophore has not been fully demonstrated. In our study, none of the newborns had malformations, and gestational weeks and birth weights were normal. However, further studies on the safety of this technique are needed to implement it routinely in human reproduction clinics. Wider implications of the findings: According to these findings, an increase in the initial levels of calcium in the oocyte through the application of the Ca2+ ionophore A23187 after ICSI improves the results of failed assisted reproduction cycles, especially in the case of those diagnosed with fertility failure, which is a clear indication for AOA. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document