endometrial injury
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 47)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Suat Suphan Ersahin ◽  
Aynur Ersahin

Abstract Objective It is not known by which mechanism endometrial injury increases pregnancy rates. Leukaemia inhibitory factor (LIF) is a cytokine involved in wound healing and implantation. The aim of this study was to determine the change in endometrial LIF mRNA expression before and after mechanical injury during hysteroscopy. Methods Forty patients with a history of two or more unsuccessful implantations who decided to undergo hysteroscopy in the proliferative phase were divided into two equal groups: one with endometrial injury (scratching group) and the other with noninjury (control group). Endometrial sampling was conducted before injury on the patients in the scratching group, and then injury was performed with monopolar needle forceps. Only diagnostic hysteroscopy was performed on the patients in the control group. Endometrial tissues were collected using a Pipelle catheter between Days 20 and 23 of the mid-luteal phase of the next cycles in both the scratching and control groups. Endometrial LIF mRNA expression was evaluated with the use of reverse-transcription polymerase chain reactions. Results Relative changes in mRNA expression levels of the LIF gene in endometrial samples taken before and after injury were calculated using the 2-ΔΔCt method, and the fold changes obtained were compared between and within the groups. Compared with preinjury values, an 11.1-fold increase was found in postinjury LIF mRNA expression in patients with monopolar forceps injury (p < 0.001). There was a 3.9-fold significant increase in postinjury LIF mRNA levels compared with those in the control group (p < 0.02). Conclusions The fertility-promoting effect of hysteroscopy-guided mechanical endometrial injury may be mediated by LIF mRNA.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Lu Zhang ◽  
Ying Li ◽  
Yi-Chao Dong ◽  
Chun-Yi Guan ◽  
Shi Tian ◽  
...  

AbstractThe endometrium plays a critical role in embryo implantation and pregnancy, and a thin uterus is recognized as a key factor in embryo implantation failure. Umbilical cord mesenchymal stem cells (UC-MSCs) have attracted interest for the repair of intrauterine adhesions. The current study investigated the repair of thin endometrium in rats using the UC-MSCs and the mechanisms involved. Rats were injected with 95% ethanol to establish a model of thin endometrium. The rats were randomly divided into normal, sham, model, and UC-MSCs groups. Endometrial morphological alterations were observed by hematoxylin–eosin staining and Masson staining, and functional restoration was assessed by testing embryo implantation. The interaction between UC-MSCs and rat endometrial stromal cells (ESCs) was evaluated using a transwell 3D model and immunocytochemistry. Microarray mRNA and miRNA platforms were used for miRNA-mRNA expression profiling. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses were performed to identify the biological processes, molecular functions, cellular components, and pathways of endometrial injury and UC-MSCs transplantation repair and real-time quantitative reverse transcription PCR (qRT-PCR) was performed to further identify the expression changes of key molecules in the pathways. Endometrium thickness, number of glands, and the embryo implantation numbers were improved, and the degree of fibrosis was significantly alleviated by UC-MSCs treatment in the rat model of thin endometrium. In vitro cell experiments showed that UC-MSCs migrated to injured ESCs and enhanced their proliferation. miRNA microarray chip results showed that expression of 45 miRNAs was downregulated in the injured endometrium and upregulated after UC-MSCs transplantation. Likewise, expression of 39 miRNAs was upregulated in the injured endometrium and downregulated after UC-MSCs transplantation. The miRNA-mRNA interactions showed the changes in the miRNA and mRNA network during the processes of endometrial injury and repair. GO and KEGG analyses showed that the process of endometrial injury was mainly attributed to the decomposition of the extracellular matrix (ECM), protein degradation and absorption, and accompanying inflammation. The process of UC-MSCs transplantation and repair were accompanied by the reconstruction of the ECM, regulation of chemokines and inflammation, and cell proliferation and apoptosis. The key molecules involved in ECM-receptor interaction pathways were further verified by qRT-PCR. Itga1 and Thbs expression decreased in the model group and increased by UC-MSCs transplantation, while Laminin and Collagen expression increased in both the model group and MSCs group, with greater expression observed in the latter. This study showed that UC-MSCs transplantation could promote recovery of thin endometrial morphology and function. Furthermore, it revealed the expression changes of miRNA and mRNA after endometrial injury and UC-MSCs transplantation repair processed, and signaling pathways that may be involved in endometrial injury and repair.


2021 ◽  
Author(s):  
Yuelin Wu ◽  
Shengyi Gu ◽  
Jonathan M. Cobb ◽  
Griffin H. Dunn ◽  
Taylor A. Muth ◽  
...  

Abstract Background Uterine endometrium is a highly dynamic tissue which consists of a basal layer and a functional layer. Bone marrow-derived mesenchymal stem cells (BMSCs) have been recognized as new candidates for the treatment of serious endometrial injuries. However, due to the local microenvironment of damaged endometrium, transplantation of BMSCs yielded disappointing results with respect to survival, attachment, differentiation, and proliferation. Methods Pectin-Pluronic® F-127 scaffolds were fabricated. E2 was encapsulated into the W/O/W microspheres to construct pectin-based E2-loaded microcapsules (E2 MPs). The BMSCs/E2 MPs/scaffolds system was then injected into the uterine cavity of mouse endometrial injury model. Furthermore, the mechanism of E2 in promoting the repair of endometrial injury was also investigated. Result Pectin-Pluronic® F-127 scaffolds could provide three-dimensional architecture for the attachment, growth, and migration of BMSCs. E2 MPs has the potential to serve as a long-term reliable source of E2 for endometrial regeneration. At four weeks after transplantation, it was demonstrated that the system increased proliferative abilities of uterine endometrial cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive an embryo, suggesting that the BMSCs/E2 MPs/scaffolds system is a promising treatment option for endometrial regeneration. Exosomes are critical paracrine mediators that act as biochemical cues to direct stem cell differentiation. In this study, it was found that the expression of endometrial epithelial cells (EECs) markers was up-regulated in BMSCs treated by exosomes secreted from endometrial stromal cells (ESCs-Exos). Exosomes derived from E2-stimulated ESCs further promoted the expression level of EECs markers in BMSCs, suggesting exosomes released from ESCs by E2 stimulation could enhance the differentiation efficiency of BMSCs. Conclusion The BMSCs/E2 MPs/scaffolds therapeutic strategy may be beneficial in the treatment of severely damaged endometrium. Exosomes derived from ESCs play paracrine roles in endometrial regeneration stimulated by E2, potentially modulating the differentiation of BMSCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Ting Song ◽  
Peng-Cheng Liu ◽  
Jie Tan ◽  
Chen-Yu Zou ◽  
Qian-Jin Li ◽  
...  

AbstractIntrauterine adhesion refers to endometrial repair disorders which are usually caused by uterine injury and may lead to a series of complications such as abnormal menstrual bleeding, recurrent abortion and secondary infertility. At present, therapeutic approaches to intrauterine adhesion are limited due to the lack of effective methods to promote regeneration following severe endometrial injury. Therefore, to develop new methods to prevent endometrial injury and intrauterine adhesion has become an urgent need. For severely damaged endometrium, the loss of stem cells in the endometrium may affect its regeneration. This article aimed to discuss the characteristics of various stem cells and their applications for uterine tissue regeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shan Wang ◽  
Cheng Shi ◽  
Xiaohui Cai ◽  
Yanbin Wang ◽  
Xi Chen ◽  
...  

Background. Abnormal endometrial repair after injury results in the formation of intrauterine adhesions (IUA) and a thin endometrium, which are key causes for implantation failure and infertility. Stem cell transplantation offers a potential alternative for some cases of severe Asherman’s syndrome that cannot be treated with surgery or hormonal therapy. Umbilical cord-derived mesenchymal stem cells (UCMSCs) have been reported to repair the damaged endometrium. However, there is no report on the effects of UCMSCs previously seeded on human acellular amniotic matrix (AAM) on endometrial injury. Methods. Absolute ethanol was injected into rat uteri to damage the endometrium. UCMSCs previously seeded on AAM were surgically transplanted. Using a variety of methods, the treatment response was assessed by endometrial thickness, endometrial biomarker expression, endometrial receptivity, cell proliferation, and inflammatory factors. Results. Endometrial thickness was markedly improved after UCMSC-AAM transplantation. The expression of endometrial biomarkers, namely, vimentin, cytokeratin, and integrin β3, in treated rats increased compared with untreated rats. In the UCMSC-AAM group, the VEGF expression decreased, whereas that of MMP9 increased compared with the injury group. Moreover, in the AAM group, the MMP9 expression increased. The expression of proinflammatory factors (IL-2, TNFα, and IFN-γ) in the UCMSC-AAM group decreased compared with the untreated group, whereas the expression of anti-inflammatory factors (IL-4, IL-10) increased significantly. Conclusions. UCMSC transplantation using AAM as the carrier can be applied to treat endometrial injury in rats. The successful preparation of lyophilized AAM provides the possibility of secondary infectious disease screening and amniotic matrix quality detection, followed by retrospective analysis. The UCMSC-AAM complex may promote the better application of UCMSCs on the treatment of injured endometrium.


2021 ◽  
Vol 27 (10) ◽  
Author(s):  
Yi-An Tu ◽  
Chia-Hung Chou ◽  
Po-Kai Yang ◽  
Chia-Tung Shun ◽  
Wen-Fen Wen ◽  
...  

Abstract There have been reports of improved pregnancy rates after performing intentional endometrial injuries, also known as endometrial scratching, in patients with recurrent implantation failure. In our previous study on intentional endometrial injury, we found an increased expression of matrix metalloproteinase (MMP)-3 following induced injuries to the mice endometrium. In the current study, we further examine whether the rise in MMP-3 could contribute to increased angiogenesis. Female C57B1/6 mice were obtained at 12 weeks of age, and intentional endometrial injuries were induced mechanically in the left uterine horns. Using the appropriate media, uterine-washes were performed on the injured and uninjured (control) horns of the harvested uteri. The uterine tissues were further processed for tissue lysates, histopathology and immunohistochemistry. The results show that intentional endometrial injuries caused an increase in secreted LPA in the injured horns, which were detected in the uterine-washes. In addition, LPA induced increased production of TNF-α in human endometrial epithelial cells (hEEpCs). Furthermore, TNF-α appeared to induce differential and cell-specific upregulation of the MMPs: MMP-3 was upregulated in the epithelial (hEEpCs), while MMP-9 was upregulated in the endothelial cells (human endometrial endothelial cells; hEEnCs). The upregulation of MMP-3 appeared to be necessary for the activation of MMP-9, whose active form stimulated the formation of vessel-like structure by the hEEnCs. The results of this study suggest that there may be enhanced angiogenesis following intentional endometrial injuries, which is mediated in part by TNF-α-induced and MMP-3-activated MMP-9 production.


Sign in / Sign up

Export Citation Format

Share Document