183 In Vitro Generation and Characterization of Putative Primordial Germ Cells Derived from Induced Pluripotent Stem Cells in Cattle

2018 ◽  
Vol 30 (1) ◽  
pp. 231
Author(s):  
F. F. Bressan ◽  
M. A. Lima ◽  
L. S. Machado ◽  
N. C. G. Pieiri ◽  
P. Fantinato-Neto ◽  
...  

Embryonic pluripotent stem cells (ESC) and induced pluripotent stem cells (iPSC) were reported capable of differentiating into primordial germ cell-like (PGCL) and functional gametes in vitro in the murine model (Hikabe et al. 2016 Nature 539, 299-303). The in vitro generation of primordial germ cells (PGC) and gametes from farm animals would greatly contribute to enhance animal production technologies and to the creation of adequate models for several disorders. The present study aimed at the generation of PGC in vitro (iPGC) from iPSC in cattle and their characterisation through pluripotency and germ cell markers. For that, bovine iPSC previously generated and characterised (Bressan et al. 2015 Reprod. Fertil. Dev. 27, 254) were submitted to in vitro differentiation into epiblast-like cells (EpiLC) and iPGC by the protocol adapted from mice (Hayashi et al. 2011 Cell 146, 519-532). The biPS cells were induced into EpiLC by culture in fibronectin-coated (16.7 µg mL−1) 6-well plates in N2B27 culture medium supplemented with 20 ng mL−1 activin A, 12 ng mL−1 basic fibroblast growth factor (bFGF), and 1% knockout serum replacement (KSR) for 48 h and further differentiated into iPGC by non-adherent culture (Agreewell plates, StemCell Technologies, Vancouver, BC, Canada) with GK15 medium (GMEM supplemented with 15% KSR, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 2 mm l-glutamine, and 1% antibiotics) in the presence of 500 ng mL−1 BMP4, 100 ng mL−1 SCF, 500 ng mL−1 BMP8b, and 50 ng mL−1 epidermal growth factor for 4 days. The cells were then characterised regarding morphology, detection of alkaline phosphatase, immunofluorescence for OCT4, DDX4, VASA, and c-Kit proteins, and transcripts of pluripotency-related genes OCT4 and SOX2, as well as of imprinted genes (H19, SNRPN) and imprinted-related (DNMT1, DNMT3B) genes were analysed through RT-qPCR and compared with constitutive genes GAPDH, NAT1, and ACTB. Alkaline phosphatase and immunofluorescence analysis were positive for all specific markers. Interestingly, although OCT4 and SOX2 expression was present in iPS, EpiLC, and iPGC, this last group presented greater OCT4 and lesser SOX2 transcript amounts compared with other groups, suggesting, as expected, that PGC are still pluripotent but may already be differentiating into germ-cell lineages. The expression of H19 was increased in iPGC, whereas the expression of SNRPN was decreased only in the fibroblast group, potentially indicating epigenetic reprogramming process in these cells. Expression of DNMT1 and DNMT3B was not different between pluripotent groups but subtly increased when compared with that in fibroblasts. The results obtained herein represent an important first step in the in vitro generation of PGC and gametes from domestic farm animals, an unprecedented and desirable tool for enhancing new reproductive technologies and providing new understanding of cellular reprogramming and pluripotent germ cell biology. Financially supported by FAPESP grants 2013/08135-2, 2013/13686-8, 2015/26818-5; CNPq 482163/2013-5.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1889
Author(s):  
Tae-Kyung Hong ◽  
Jae-Hoon Song ◽  
So-Been Lee ◽  
Jeong-Tae Do

Assisted reproductive technologies (ARTs) have developed considerably in recent years; however, they cannot rectify germ cell aplasia, such as non-obstructive azoospermia (NOA) and oocyte maturation failure syndrome. In vitro gametogenesis is a promising technology to overcome infertility, particularly germ cell aplasia. Early germ cells, such as primordial germ cells, can be relatively easily derived from pluripotent stem cells (PSCs); however, further progression to post-meiotic germ cells usually requires a gonadal niche and signals from gonadal somatic cells. Here, we review the recent advances in in vitro male and female germ cell derivation from PSCs and discuss how this technique is used to understand the biological mechanism of gamete development and gain insight into its application in infertility.


2015 ◽  
Vol 27 (1) ◽  
pp. 89 ◽  
Author(s):  
Charles A. Easley ◽  
Calvin R. Simerly ◽  
Gerald Schatten

Generating gametes from pluripotent stem cells (PSCs) has many scientific justifications and several biomedical rationales. Here, we consider several strategies for deriving gametes from PSCs from mice and primates (human and non-human) and their anticipated strengths, challenges and limitations. Although the ‘Weismann barrier’, which separates the mortal somatic cell lineages from the potentially immortal germline, has long existed, breakthroughs first in mice and now in humans are artificially creating germ cells from somatic cells. Spermatozoa with full reproductive viability establishing multiple generations of seemingly normal offspring have been reported in mice and, in humans, haploid spermatids with correct parent-of-origin imprints have been obtained. Similar progress with making oocytes has been published using mouse PSCs differentiated in vitro into primordial germ cells, which are then cultured after xenografting reconstructed artificial ovaries. Progress in making human oocytes artificially is proving challenging. The usefulness of these artificial gametes, from assessing environmental exposure toxicity to optimising medical treatments to prevent negative off-target effects on fertility, may prove invaluable, as may basic discoveries on the fundamental mechanisms of gametogenesis.


Cell Research ◽  
2021 ◽  
Author(s):  
Xiaoxiao Wang ◽  
Yunlong Xiang ◽  
Yang Yu ◽  
Ran Wang ◽  
Yu Zhang ◽  
...  

AbstractThe pluripotency of mammalian early and late epiblast could be recapitulated by naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. However, these two states of pluripotency may not be sufficient to reflect the full complexity and developmental potency of the epiblast during mammalian early development. Here we report the establishment of self-renewing formative pluripotent stem cells (fPSCs) which manifest features of epiblast cells poised for gastrulation. fPSCs can be established from different mouse ESCs, pre-/early-gastrula epiblasts and induced PSCs. Similar to pre-/early-gastrula epiblasts, fPSCs show the transcriptomic features of formative pluripotency, which are distinct from naïve ESCs and primed EpiSCs. fPSCs show the unique epigenetic states of E6.5 epiblast, including the super-bivalency of a large set of developmental genes. Just like epiblast cells immediately before gastrulation, fPSCs can efficiently differentiate into three germ layers and primordial germ cells (PGCs) in vitro. Thus, fPSCs highlight the feasibility of using PSCs to explore the development of mammalian epiblast.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Laís Vicari de Figueiredo Pessôa ◽  
Pedro Ratto Lisboa Pires ◽  
Maite del Collado ◽  
Naira Caroline Godoy Pieri ◽  
Kaiana Recchia ◽  
...  

Introduction. Pluripotent stem cells are believed to have greater clinical potential than mesenchymal stem cells due to their ability to differentiate into almost any cell type of an organism, and since 2006, the generation of patient-specific induced pluripotent stem cells (iPSCs) has become possible in multiple species. Objectives. We hypothesize that different cell types respond differently to the reprogramming process; thus, the goals of this study were to isolate and characterize equine adult and fetal cells and induce these cells to pluripotency for future regenerative and translational purposes. Methods. Adult equine fibroblasts (eFibros) and mesenchymal cells derived from the bone marrow (eBMmsc), adipose tissue (eADmsc), and umbilical cord tissue (eUCmsc) were isolated, their multipotency was characterized, and the cells were induced in vitro into pluripotency (eiPSCs). eiPSCs were generated through a lentiviral system using the factors OCT4, SOX2, c-MYC, and KLF4. The morphology and in vitro pluripotency maintenance potential (alkaline phosphatase detection, embryoid body formation, in vitro spontaneous differentiation, and expression of pluripotency markers) of the eiPSCs were characterized. Additionally, a miRNA profile analysis of the mesenchymal and eiPSCs was performed. Results. Multipotent cells were successfully isolated, but the eBMmsc failed to generate eiPSCs. The eADmsc-, eUCmsc-, and eFibros-derived iPSCs were positive for alkaline phosphatase, OCT4 and NANOG, were exclusively dependent on bFGF, and formed embryoid bodies. The miRNA profile revealed a segregated pattern between the eiPSCs and multipotent controls: the levels of miR-302/367 and the miR-92 family were increased in the eiPSCs, while the levels of miR-23, miR-27, and miR-30, as well as the let-7 family were increased in the nonpluripotent cells. Conclusions. We were able to generate bFGF-dependent iPSCs from eADmsc, eUCmsc, and eFibros with human OSKM, and the miRNA profile revealed that clonal lines may respond differently to the reprogramming process.


2016 ◽  
Vol 28 (2) ◽  
pp. 207
Author(s):  
J. Galiguis ◽  
C. E. Pope ◽  
C. Dumas ◽  
G. Wang ◽  
R. A. MacLean ◽  
...  

As precursors to germline stem cells and gametes, there are many potential applications for primordial germ cells (PGC). Primordial germ cell-like cells have been generated from mouse embryonic stem cells and induced pluripotent stem cells, which subsequently were used to produce functional spermatozoa, oocytes, and healthy offspring (Hayashi et al. 2012 Science 338(6109), 971–975). Applying this approach to generate sperm and oocytes of endangered species is an appealing prospect. Detection of molecular markers associated with PGC is essential to optimizing the process of PGC induction. In the current study, in vitro-derived domestic cat embryos were assessed at various developmental stages to characterise the expression of markers related to the specification process of cat PGC. In vivo-matured, IVF oocytes were cultured until Days 7, 9, and 12 post-insemination. Then, embryos were assessed by RT-qPCR to determine relative transcript abundance of the pluripotency markers NANOG, POU5F1, and SOX2; the epiblast marker DNMT3B; the primitive endoderm marker GATA4; the PGC marker PRDM14; and the germ cell marker VASA; RPS19 was used as the internal reference gene. To validate the qPCR results, fibroblasts served as the negative control cells, whereas spermatogonial stem cells (SSC) served as the positive control cells for GATA4, PRDM14, and VASA. Total mRNA were isolated using the Cells-to-cDNA™ II Kit (Ambion/Thermo Fisher Scientific, Waltham, MA, USA) from either pools of 2 to 6 embryos or ~25 000 fibroblasts/SSC. A minimum of 2 biological replicates for each sample type was analysed, with transcript abundance detected in 2 technical replicates by SYBR Green chemistry. Student’s t-tests were performed on the ΔCts for statistical analysis. PRDM14, specific to the germ cell lineage, was detected as early as Day 7, suggesting the presence of PGC precursor cells. Compared with their levels at Day 7, PRDM14 expression was 0.34-fold lower in SSC (P < 0.05), whereas expression of VASA and GATA4 were 1964-fold and 144-fold higher, respectively (P < 0.05). This seems to emphasise the relative importance of PRDM14 in pre-germ cell stages. In general, all genes analysed were up-regulated from Day 7 to Day 9. This up-regulation was statistically significant for SOX2 and GATA4 (P < 0.05). Relative to that at Day 9, all transcripts were relatively less abundant at Day 12 (P < 0.05 for NANOG, POU5F1, SOX2, DNMT3B, and PRDM14). The data suggest that PGC specification takes place near Day 9, with peak specification activity concluding by Day 12. Although much needs be explored about PGC specification in the cat before applying induction and in vitro germ cell production techniques, these findings represent the first step towards a new potential strategy for preserving endangered and threatened felids.


2013 ◽  
Vol 81 (1) ◽  
pp. 2-19 ◽  
Author(s):  
Masanori Imamura ◽  
Orie Hikabe ◽  
Zachary Yu-Ching Lin ◽  
Hideyuki Okano

2012 ◽  
Vol 14 (4) ◽  
pp. 574-579 ◽  
Author(s):  
Yong Zhu ◽  
Hong-Liang Hu ◽  
Peng Li ◽  
Shi Yang ◽  
Wei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document