70 Does the addition of docosahexaenoic acid to in vitro systems during culture improve the quality of bovine embryos?

2019 ◽  
Vol 31 (1) ◽  
pp. 160
Author(s):  
J. A. Sánchez Viafara ◽  
G. Lopez de Vasconcelos ◽  
R. Maculan ◽  
N. Gomes Alves ◽  
J. Camisão de Souza

The aims of this study were to decrease the apoptotic index and increase cryotolerance of bovine embryos produced in vitro with the addition of 1 µM docosahexaenoic acid (DHA). On Day 1, presumed zygotes were cultivated with 1µM DHA (Sigma, St. Louis, MO, USA; n=437), and without the agonist (control group; n=450). The cleavage rate (%) was evaluated on Day 2 and the development of blastocysts on Day 7. Embryos before and after vitrification were fixed for the TUNEL trial. After vitrification, the embryos were heated and re-cultivated to evaluate the hatching rate at 12, 24, 36, 48, 60, and 72h. A sample of re-cultivated embryos at 12h of DHA (n=5), and without the agonist (control group; n=6), was frozen for mass spectrometry (MALDI-MS). Statistical analyses of deviance were carried out considering generalized mixed linear models, and the effect of the collection day (block) was considered as random. For the count variables, the Poisson distribution and the log link function were considered. In the cases of variables represented by rates, binomial distribution and the logit link function were used. In the study of cryotolerance, ANOVA of the hatching rate for each one of the times evaluated was carried out. In cases of significance of the effect of treatments, the Dunnett test was applied to compare treatments. Multivariate and univariate statistical models were used for analysis of MALDI-MS. All analyses were made using the GLIMMIX procedure of the SAS software (SAS Institute Inc., Cary, NC, USA). The cleavage rate was not different between the groups (P>0.05) and the production of blastocysts was lower in the DHA group (P<0.05). The number of cells per embryo was higher (P<0.05) by the addition of 1μM DHA in blastocysts pre- and post-vitrification. The rate of total and internal cell mass apoptosis in fresh embryos (11.73 and 15.98%) increased compared with the control group (9.62% and 11.03%, respectively). The proportion of internal cell mass in fresh embryos decreased in the DHA group (39.93%) compared with the control group (57.00%). Hatching rates at 48, 60, and 72h after devitrification in the group treated with 1μM DHA were not different (P>0.05) compared with the control group. Phosphatidylcholine [phosphatidylcholine (32: 0)+H] was more abundant (P<0.05) in embryos cultured with DHA, and thus was considered as a negative apoptosis biomarker. In conclusion, the use of 1μM DHA in vitrification of bovine embryos impairs embryonic quality and development under the conditions of the present study. Research was supported by CAPES, FAPEMIG, PPGCV/UFLA, EVUFMG, CENATTE EMBRIÕES.

2015 ◽  
Vol 27 (1) ◽  
pp. 209
Author(s):  
T. Fanti ◽  
N. M. Ortega ◽  
R. Garaguso ◽  
M. J. Franco ◽  
C. Herrera ◽  
...  

In vitro embryo production systems (IVP) try to emulate and enhance molecular events that occur in in vivo reproductive systems in order to increase, not only the number of embryos generated, but also their quality. Despite advances, IVP processes are still inefficient compared with in vivo systems. Several studies have attributed this deficiency to a lack of oocyte competence due to spontaneous premature resumption of meiotic maturation in the oocyte following the removal from its follicular environment. Therefore, our objective was to increase oocyte competence avoiding premature resumption of meiosis by using cyclic adenosine monophosphate modulators. Cumulus-oocyte complexes (COC) were obtained from ovaries of slaughterhouses, washed, and randomly allocated in 2 culture systems. Oocytes in the control group (IVM) were cultured for a period of 24 h in basal medium TCM-199 with EGF (1 µg mL–1) supplemented with rhFSH (25 mIU mL–1). Oocytes in the biphasic in vitro maturation (b-IVM) group were cultured for 2 h in a basal medium supplemented with a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 500 µM), and an activator of adenylate cyclase (forskolin, 100 µM). Subsequently, COC were washed and cultured in basal medium supplemented with cilostamide (20 µM) and rhFSH (25 mIU mL–1) for 24 h. Maturation rates were analysed and IVF was performed with a dose of 1 × 106 sperm cells mL–1 in IVF-SOF medium. The presumptive zygotes were cultured in continuous-single-culture medium (Irvine) supplemented with 8 mg mL–1 of BSA until they reached the blastocyst stage. No significant differences in maturation, cleavage, and cryotolerance were observed between b-IVM and IVM groups (P > 0.05; Table 1). This study showed that b-IVM produced a significant increase in IVP compared with the control (IVM) at Days 7 and 8 (P < 0.01). Blastocyst hatching rate was significant (P < 0.05) for both treatment and day of analysis. The b-IVM group yielded an increase of 10 and 7.5% at Days 7 and 8, respectively, of IVP. The biphasic maturation showed an improvement in quality regarding the control group, in the timing analysis of production, and hatching percentages, and these results show that the use of cyclic adenosine monophosphate modulators in the oocyte maturation process enhances oocyte competence, which is reflected in increased productivity and embryo quality. We propose this treatment as an alternative to the standard protocols currently used in IVP of bovine embryos. Table 1.Effect of treatment on maturation, cleavage, and cryotolerance


Zygote ◽  
2011 ◽  
Vol 20 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Alessandra Corallo Nicacio ◽  
Renata Simões ◽  
Fabiola Freitas de Paula-Lopes ◽  
Flavia Regina Oliveira de Barros ◽  
Maria Angelica Peres ◽  
...  

SummaryThe aim of this work was to evaluate the effect of cryopreservation protocols on subsequent development of in vitro produced bovine embryos under different culture conditions. Expanded in vitro produced blastocysts (n = 600) harvested on days 7–9 were submitted to controlled freezing [slow freezing group: 10% ethylene glycol (EG) for 10 min and 1.2°C/min cryopreservation]; quick-freezing [rapid freezing group: 10% EG for 10 min, 20% EG + 20% glycerol (Gly) for 30 s]; or vitrification [vitrification group: 10% EG for 10 min, 25% EG + 25% Gly for 30 s] protocols. Control group embryos were not exposed to cryoprotectant or cryopreservation protocols and the hatching rate was evaluated on day 12 post-insemination. In order to evaluate development, frozen–thawed embryos were subjected to granulosa cell co-culture in TCM199 or SOFaa for 4 days. Data were analyzed by PROC MIXED model using SAS Systems for Windows®. Values were significant at p < 0.05. The hatching rate of the control group was 46.09%. In embryos cultured in TCM199, slow freezing and vitrification group hatching rates were 44.65 ± 5.94% and 9.43 ± 6.77%, respectively. In embryos cultured in SOFaa, slow freezing and vitrification groups showed hatching rates of 11.65 ± 3.37 and 8.67 ± 4.47%, respectively. In contrast, the rapid freezing group embryos did not hatch, regardless of culture medium. The slow freezing group showed higher hatching rates than other cryopreservation groups. Under such conditions, controlled freezing (1.2°C/min) can be an alternative to cryopreservation of in vitro produced bovine embryos.


Zygote ◽  
2020 ◽  
Vol 28 (5) ◽  
pp. 403-408
Author(s):  
Daniela Moraes Pereira ◽  
Christopher Junior Tavares Cardoso ◽  
Wilian Aparecido Leite da Silva ◽  
Mirela Brochado Souza-Cáceres ◽  
Mariana Santos ◽  
...  

SummaryThe aim of this study was to evaluate the production of bovine embryos in vitro when supplemented with l-carnitine for 24 h beginning on day 5 (d 5) under two different oxygen tensions (20% or 5%) and the relationship of nitric oxide (NO) in in vitro culture (IVC) medium to embryo development. Cumulus–oocyte complexes (COC; n = 837) were matured in vitro for 24 h and fertilization was performed for 18 h. Zygotes were cultured in vitro for 9 days after in vitro fertilization in synthetic oviductal fluid (SOF) medium with 5% fetal calf serum. At d 5 the plates were assigned to one of four treatment groups: high (20%) or low (5%) O2 tension either with or without the addition of 3.03 mM l-carnitine (High-Cont, High-Lcar, Low-Cont, Low-Lcar). The concentration of NO in the culture medium was evaluated on d 5, d 6 and d 9. On d 7, parts of the embryos were submitted for evaluation of intracellular lipid droplets. The cleavage rate was similar (P > 0.05) between high and low O2 tension and the blastocyst rate was similar in all conditions evaluated. The hatching rate was higher (P < 0.05) for Low-Cont. The NO concentration was higher at d 9 under low O2 tension (P < 0.1). The addition of 3.03 mM l-carnitine between d 5 and d 6 of IVC was not efficient in reducing cytoplasmic lipid content of bovine embryos. Additionally, IVC at a low oxygen tension without l-carnitine promoted better conditions for embryo development. A higher concentration of NO in medium was observed under low O2 tension.


2008 ◽  
Vol 20 (1) ◽  
pp. 147
Author(s):  
J. E. Park ◽  
G. Jang ◽  
H. J. Oh ◽  
S. G. Hong ◽  
I. S. Yang ◽  
...  

During the preimplantation stage, embryo development occurs in a maternal environment within the oviducts and uterine horns. It has been speculated that both the embryo itself and the maternal reproductive tract provide paracrine factors that influence embryo development (Jones et al. 2006 Reproduction 132(5), 799–810). Activins are known for FSH releasers, and several previous studies have reported that activin subunits and activin receptors mRNA were expressed in oocytes, zygotes, and oviduct (Yoshioka et al. 1998 Reprod. Fertil. Dev. 10(3), 293–298; Gandolfi et al. 1995 Mol. Reprod. Dev. 40(3), 286–291). The purposes of the present study were Experiment 1) to evaluate the effects of activin A on developmental competence of bovine embryos derived from two-step defined culture medium (Lim et al. 2007 Theriogenology 67(2), 293–302) and Experiment 2) to analyze the effects of activin A on transcriptional level of the genes in IVF embryos. Cumulus–oocyte complexs were harvested from ovaries obtained from a local slaughter house, matured, and fertilized in vitro. In vitro fertilized zygotes cultured in media supplemented with activin A in the early stage at the concentrations of 0, 10, or 100 ng mL–1 or in the later stage medium at the concentrations of 0, 10, or 100 ng mL–1. Data were analyzed using the Statistical Analysis System (SAS) program. In Exp. 1, although the development competence of embryos that cultured with activin A in the early stage medium was not significantly different, development to blastocysts on day 8 in the later stage medium with 100 ng mL–1 activin A was significantly higher than the control group [22.4% (54/264) v. 34.7% (76/233); P < 0.05]. Hatching rate of blastocyst on day 8 was significantly higher in the presence of 100 ng mL–1 activin A in the later stage culture medium compared with the control group [9.3% (5/54) v. 22.4% (17/76); P < 0.05]. In Exp. 2, the relative expression of 3 genes (Na/KATPase, E-cad, Glut-1) related to blastocyst hatching and implantation was analyzed. The relative abundance (ratio to GAPDH mRNA) of gene transcripts in blastocysts was measured by conventional semi-quantitative reverse transcription-polymerase chain reaction. The expression level of the Na/K ATPase, E-cad, and Glut-1 gene were higher in the presence of activin A in the culture medium compared with the control group. In conclusion, this study suggests that activin A during the later stage of in vitro bovine embryo development can enhance the developmental competence of preimplantation embryos, increase the hatching rate, and affect expression level of genes related to hatching and implantation in defined culture medium. This study was financially supported by KOSEF (grant ? M10625030005-07N250300510) and the Korean MOE, through the BK21 program for Veterinary Science.


2012 ◽  
Vol 81 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Martina Lojkic ◽  
Iva Getz ◽  
Marko Samardžija ◽  
Mario Matkovic ◽  
Goran Bacic ◽  
...  

The aim of this study was to evaluate whether the addition of cysteamine to the in vitro culture media enhances the yield, hatching rate, total cell number and inner cell mass/total cell number ratio of bovine embryos. A total of 933 bovine oocytes collected from ovaries of 60 slaughtered donors were subjected to in vitro maturation and in vitro fertilization. Following fertilization, embryos were cultured in synthetic oviductal fluid without glucose. After 24 h embryos were transferred into synthetic oviductal fluid with 1.5 mM glucose and 0 (control), 50, 100 and 200 µM of cysteamine. After 48 h, the embryos were transferred into synthetic oviductal fluid with glucose but without cysteamine and cultured until Day 9. The number of cleaved embryos on Day 2, the total number of blastocysts on Day 7 and the number of hatched blastocysts on Day 9 were calculated. Differential staining of inner cell mass and trophectoderm cells of blastocysts were performed on Day 7 and Day 9 of in vitro culture. Supplementation of in vitro culture media with 100 µM cysteamine increased the blastocyst yield (P < 0.05) without affecting the hatching rate. Furthermore, the embryos cultured in the presence of 100 µM cysteamine had significantly higher number of inner cell mass cells (P < 0.05) and the proportion of inner cell mass cells (P < 0.05) compared with the controls. The results of the present study demonstrated that the addition of 100 µM cysteamine to the in vitro culture media improved blastocyst production rate and enhance embryo quality, which could lead to the improvement of the in vitro culture system for bovine embryos.


2011 ◽  
Vol 23 (6) ◽  
pp. 809 ◽  
Author(s):  
Luisa Bogliolo ◽  
Federica Ariu ◽  
Giovanni Leoni ◽  
Stefania Uccheddu ◽  
Daniela Bebbere

Exposure to sub-lethal hydrostatic pressure (HP) treatment is emerging as an approach to improve the general resistance of gametes and embryos to in vitro conditions. The present study was aimed to evaluate the effect of HP treatment on in vitro-produced ovine blastocysts. Experiment 1 was aimed to define optimal treatment parameters: two different HP treatments were applied to blastocysts and embryo survival was evaluated. In Experiment 2, HP parameters (40 MPa, 70 min, 38°C) selected in Experiment 1 were used to treat blastocysts. Embryo quality was assessed and compared with untreated controls by counting total cell number, the inner cell mass (ICM) and trophectoderm (TE) cells and by evaluating nuclear picnosis. HP-treated blastocysts were processed for gene expression analysis (AQP3, ATP1A1, BAX, CDH1, HSP90β, NANOG, OCT4 and TP53) 1, 5 h after the end of HP exposure. Results showed that the hatching rate of embryos treated at 40 MPa was significantly higher than that of the 60 MPa-treated group (P < 0.01) and similar to untreated embryos. Blastocysts exposed at 40 MPa showed higher ICM (P < 0.05) and TE (P < 0.01) cell number and a lower percentage of picnotic nuclei (P < 0.05) compared with the control group. Significantly lower abundance for BAX (P < 0.01) and OCT4 (P < 0.05) transcripts were observed in HP embryos than in the control group. In conclusion, treatment with HP improved the quality of in vitro-produced ovine blastocysts by increasing their cell number and reducing the proportion of nuclear picnosis.


2004 ◽  
Vol 16 (2) ◽  
pp. 243
Author(s):  
A.T.D. Oliveira ◽  
C. Gebert ◽  
R.F.F. Lopes ◽  
H. Niemann ◽  
J.L. Rodrigues

In spite of in vitro embryo production systems having been greatly improved over recent years, employing a variety of culture conditions (media, protein sources, gas atmosphere, etc.), we still do not know much about the real necessity of embryos to develop under the same conditions as occur in vivo. These differences between in vivo and in vitro culture at preimplantation embryonic stages can produce deviations in gene expression and in normal fetal development (large offspring syndrome). Heat shock proteins (Hsp) are engaged in cell response to regulatory signals or perturbations in the microenviroment and can be used as a sensitive indicator of stress caused by suboptimal culture conditions (Wrenzycki et al., 2001Hum. Reprod. 16, 893–901). Hsp act as chaperones in facilitating protein folding and assembly and stabilize damaged proteins to prevent aggregation of fragments, thereby allowing repair or degradation. The aim of the present study was to investigate the effects of different embryo/volume ratios on bovine embryo development and the relative abundance of Hsp 70.1 gene transcripts. In this experiment, oocytes were isolated from slaugterhouse ovaries and matured, fertilized and cultured in groups of 5, 10, 20 or 30 per each drop of 100μL. The oocytes were matured in TCM 199 supplemented with 0.4% BSA. After maturation, oocytes were fertilized in TALP medium, using frozen/thawed sperm, selected using a percoll density gradient. The zygotes were cultured to the morula or Day 7 blastocyst stage employing SOF supplemented with 0.4 % BSA. Developmental check points were cleavage rate (Day 3pi), blastocyst formation (Day 8pi) and hatching (Day 11pi). A semi-quantitative RT-PCR assay was used to determine the relative levels of gene transcripts in single embryos at morula (Day 6) and blastocyst (Day 7) stages (Wrenzycki et al., 2001 Biol. Reprod. 65, 309–317). Data of cleavage, blastocyst formation and hatching rates were analyzed using chi-square test. Relative abundance (RA) of Hsp 70.1mRNA were compared in tested groups using ANOVA followed a Tukey test. Differences at P&lt;0.05 were considered significant. Results show that no significative difference in hatching rate per blastocyst produced was detected among the four groups. Cleavage rate and blastocyst formation were significantly higher in groups with 5, 10 and 20 embryos compared with drops containing 30 embryos. Hsp transcripts were detected in morula and blastocyst stages in all groups. In morula stage, no differences were observed in the RA of Hsp 70.1mRNA among groups with 5, 10, 20 and 30 embryos cultured per drop. However, in blastocyst stage, the RA was significantly increased in the group with 20 embryos per drop as compared to the group with 5 embryos. The results show that different embryo/volume ratios in culture influence not only cleavage rate, blastocyst formation and hatching rate, but also expression of Hsp 70.1 gene. Further studies changing other culture conditions and using in vivo-derived bovine embryos will aid in elucidating which culture systems are ideal to produce bovine embryos in vitro. This research was supported by CAPES/DAAD program and CNPq.


2006 ◽  
Vol 18 (2) ◽  
pp. 161
Author(s):  
A. C. Nicacio ◽  
R. Simões ◽  
M. A. Peres ◽  
J. S. A. Gonçalves ◽  
M. E. O. D'Ávila Assumpção ◽  
...  

The aim of this study was to evaluate the viability of in vitro-produced bovine embryos after exposure to different cryoprotectant solutions and cryopreservation. Bovine ovaries were collected at slaughterhouse and oocytes were matured, fertilized, and cultured in vitro. The embryos were co-cultured on a granulosa cell monolayer in SOF + 5% FCS and nonessential amino acids. In Experiment 1, expanded blastocysts were exposed to 10% ethylene glycol (EG) solution for 10 min (Group EG) or to 10% EG solution for 10 min and to 20% EG + 20% glycerol (Gly) solution for 30 s (Group EG/Gly). Cryoprotectants were diluted with PBS + 0.2% BSA + 0.3 M sucrose and PBS + 0.2% BSA solutions, both for 3 min, and the hatching rate was evaluated after culture. In Experiment 2, after exposure, EG Group was cryopreserved by slow freezing procedure (1.2�C/min) and EG/Gly Group was vitrified on nitrogen vapor for 2 min. After thawing, cryoprotectants were diluted using PBS + 0.2% BSA + 0.3 M sucrose and PBS + 0.2% BSA solutions, both for 3 min; hatching rate was evaluated after culture. As a control group for both experiments, non exposed embryos were cultured and evaluated for hatching rate. In Experiment 1, the hatching rates were 59.72% (43/72) for control, 62.38% (63/101) for EG, and 69.00% (69/100) for EG/Gly groups. In Experiment 2, hatching rates were 59.72% (43/72) for control, 15.22% (7/46) for EG, and 0.00% (0/46) for EG/Gly groups. Results were analyzed by chi-square test. In Experiment 1, no differences were observed among groups (P > 0.05) and in Experiment 2, differences were observed among control, EG, and EG/Gly groups (P < 0.05). In conclusion, the cryoprotectants were not deleterious to the development of in vitro bovine embryos until hatching, but the cryopreservation procedures decreased embryo viability. This work was supported by FAPESP 04/05335-1.


2018 ◽  
Vol 30 (1) ◽  
pp. 205 ◽  
Author(s):  
R. Emmerstorfer ◽  
K. Radefeld ◽  
V. Havlicek ◽  
U. Besenfelder ◽  
H. Yu ◽  
...  

The aim of this work was to establish an in vitro culture approach using bovine oviducal fluid (OF) to improve embryo quality and to provide an in vitro system to study oviduct function. Bovine oviducts ipsilateral to ovulation were collected at the slaughterhouse, 1 to 4 days after ovulation. The OF was collected by flushing the oviducts with 1 mL of Charles Rosenkrans 1 medium (CR1). Samples from 21 oviducts were pooled and proteins were concentrated using centrifugal filter devices. Aliquots of 3 different protein concentrations, determined by Bradford assay, were prepared and stored at –20°C. Abattoir-retrieved cumulus–oocyte complexes were used for standard in vitro maturation (IVM) and IVF (Day 0). On Day 1, presumptive zygotes (n = 1498) were randomly allocated to 4 different culture groups and cultured up to Day 9. The presumptive zygotes of the control group (n = 364) were cultured in CR1 with 5% oestrous cow serum (OCS) supplemented with 1 mg mL−1 hyaluronan. In the experimental groups, OCS was replaced by OF, resulting in 3 groups with final protein concentrations of 0.1 mg mL−1 (n = 380), 0.5 mg mL−1 (n = 380) or 1 mg mL−1 (n = 374). Cleavage rate was recorded on Day 2 and blastocyst yield on Days 7, 8, and 9 after fertilization. On Day 7, blastocysts were removed and either stained (Hoechst 33342) for cell number or subjected to a slow freezing protocol using 1.5 M ethylene glycol. After thawing, the re-expansion and hatching rate of blastocysts were determined at 24, 48 and 72 h. Eight replicates were carried out and data were analysed by ANOVA. Cleavage rate increased with increasing protein concentration (0.1 mg mL−1: 80.9 ± 4.2%; P > 0.05; 0.5 mg mL−1: 83.4 ± 2.5%; P < 0.1) and was significantly higher in the 1 mg mL−1 group (84.5 ± 4.4%; P < 0.05) compared with the control group (79.7 ± 3.4%). The cumulative blastocyst rate on Day 9 was significantly lower (P < 0.05) in all experimental groups (0.1 mg mL−1: 15.8 ± 8.9%; 0.5 mg mL−1: 18.7 ± 12.0%; 1 mg mL−1: 17.0 ± 11.2%) compared with the control group (34.1 ± 5.4%). The total number of cells was not affected by OF (P > 0.05). There was no significant difference (P > 0.05) in the post-thaw re-expansion rate between the experimental groups (0.1 mg mL−1: n = 26 thawed blastocysts; 0.5 mg mL−1: n = 27; 1 mg mL−1: n = 23) and the control group (n = 58). The post-thaw hatching rate was significantly higher at 24 and 72 h, respectively, in the 0.5 mg mL−1 group (44.4% and 74.1%; P < 0.05) and the 1 mg mL−1 group (47.8%; P < 0.05; and 82.6%; P < 0.01) compared with the control group (18.9% and 44.8%). The replacement of serum with OF during in vitro culture of bovine embryos had a stage specific effect, resulting in higher cleavage rates but lower blastocyst rates. To address this issue, OF will be collected at different stages and applied in the matching in vitro culture phases in future studies. Interestingly, the post-thaw hatching rate was up to twice as high in the experimental groups, indicating better quality of those embryos developing to blastocyst stage.


2017 ◽  
Vol 29 (1) ◽  
pp. 146
Author(s):  
D. Le Bourhis ◽  
M. Verachten ◽  
P. Salvetti ◽  
M. Hochet ◽  
L. Schibler

The objective of the present study was to determine the effect of supplementation of culture medium with carnosine (β-alanyl-l-histidine; Sigma, St-Quentin Fallavier, France), a reactive oxygen species scavenger, on in vitro bovine embryo development and survival following cryopreservation. Abattoir-derived bovine oocytes (4 replicates) were in vitro matured and fertilized with frozen-thawed semen of one bull, according to our standard procedures. In Experiment 1, 20 h after IVF, groups of presumptive zygotes were cultured in 30 μL of SOF BSAaa + 1% oestrus cow serum with 0 (control; n = 205) or 5 μg mL−1 of carnosine (n = 209) under humidified air with 5% CO2, 5% O2, and 88% N2. Cleavage rates were determined on Day 2, and the blastocyst rates and grade were assessed on Day 7 according to IETS classification. Day 7 grade 1 expanded blastocysts (n = 25 control and n = 27 carnosine) were frozen in 1.5 M ethylene glycol + 0.1 M sucrose. Embryos were thawed and then cultured for 72 h in SOF-BSAaa + 1% oestrus cow serum for re-expansion and hatching rate assessments at +24 h, +48 h, and +72 h post-thawing. In Experiment 2, presumed zygotes were cultured in SOF BSAaa + 1% oestrus cow serum with 0 (control; n = 48) or 5 μg mL−1 of carnosine (n = 48) in a WOW dish and observed with Time Laps Cinematography (Primo Vision®, VitroLife, Göteborg, Sweden). Images were recorded every 15 min for up to 168 h post-insemination. For embryos that reached the blastocyst stage, mean timing of the first cleavage (C1; 2-cell stage), second cleavage (C2; 4-cell stage), second cleavage to compaction (C3), and blastocoel cavity appearance (B4) were recorded. Chi-square test for Experiment 1 and Student’s t-test for Experiment 2 were used, and differences were considered significant at P < 0.05. In Experiment 1, no differences were observed in cleavage rate, blastocyst rate on Day 7, and grade 1 blastocyst rate between both control and carnosine groups (84.0 ± 4.2 v.85.2 ± 3.8, P = 0.7; 46.9 ± 7.1 v. 45.0 ± 7.5, P = 0.7; 24.1 ± 2.0 v. 24.0 ± 6.5, P = 0.6; respectively). After thawing, the re-expansion at +24 h was not different between groups (74.1 v. 48.0% for carnosine and control groups, respectively; P = 0.06). However, at +48 h and +72 h, the survival rate of carnosine treated blastocysts was significantly higher than that of blastocysts in the control group: 70.4 ± 4.5% v. 40.0 ± 3.8% and 59.3 ± 3.8% v. 24.0 ± 3.6%, respectively. Results from Experiment 2 indicated no difference between control and carnosine groups for C1 (32.1 ± 3.9 v. 33.8 ± 6.1; P = 0.3), C2 (8.2 ± 8.9 v. 8.9 ± 0.9; P = 0.07), and B4 (147.0 ± 9.5 v. 145.4 ± 11.6; P = 0.6), whereas C3 was significantly different within groups: 59.9 ± 9.6 v. 51.8 ± 6.7 (P = 0.008). In conclusion, bovine blastocysts derived from zygotes cultured in the presence of 5 μg mL−1 carnosine possess a significantly faster kinetic from 4-cell stage to compaction and show a higher post-thawing viability. However, further analyses are still needed to clarify the relationship between the reactive oxygen species intracellular levels after carnosine treatment and in vitro bovine embryo quality. This work was supported by FECUND European project (grant agreement number 312097).


Sign in / Sign up

Export Citation Format

Share Document