117 Supplementation of IVF medium with nerve growth factor improved bovine embryonic cleavage rates during summer months

2020 ◽  
Vol 32 (2) ◽  
pp. 185
Author(s):  
E. Amiss ◽  
J. W. Stewart ◽  
V. M. Negrón-Pérez ◽  
K. Jones ◽  
H. Haines ◽  
...  

Nerve growth factor-β (NGF), a protein originally associated with regulation of neuron development, has been found to play a role in the reproductive system of mammals. Previous research showed that administration of NGF to cows resulted in enhanced conceptus development. Although these effects were speculated to be a result of improved corpus luteum function, whether NGF could act directly on the embryo remained undetermined. Therefore, the direct effects of NGF on fertilization and embryo development warrant investigation to see whether it can be used as a novel tool to improve cleavage and blastocyst rates when producing embryos via IVF during periods of suboptimal oocyte quality, such as with heat stress. The objective of this study was to explore how supplementation of NGF, purified from bull seminal plasma, during IVF may directly affect embryo development in oocytes harvested in the summer. Abattoir-derived bovine ovaries were used for recovery of cumulus-oocyte complexes (COCs) over eight replicates through May and June. On Day −1, COCs were collected and matured for 20h in oocyte maturation medium incubated at 38.5°C. On Day 0, matured oocytes were added to a solution of IVF-Tyrode's albumin lactate pyruvate (TALP) and either phosphate-buffered saline (PBS; control) or 100ngmL−1 NGF. Pooled frozen-thawed semen from two different bulls per replicate were added to the IVF solutions and incubated with COCs for 20h at 38.5°C in a humidified atmosphere of 5% CO2. On Day 1, zygotes were washed in HEPES-TALP, and cumulus cells were removed using 1% hyaluronidase. The zygotes were plated in synthetic oviductal fluid (SOF-BE2) culture medium and incubated at 38.5°C in a tri-gas chamber (5% CO2, 5% O2, and balanced N2). Cleavage rates were recorded at 24 and 48h, calculated by dividing the number of cleaved embryos by the total zygote count. Embryos were incubated until Day 8, when the rate of blastocysts was assessed. This study found that the treatment of IVF medium with NGF increased the cleavage rate of embryos after 48h (Control: 59%; NGF: 66%; P=0.04) and the hatched blastocyst percentage per oocyte on Day 8 (Control: 6.7%; NGF: 9.4%; P=0.01). The treatment did not affect the percentage of blastocysts per cleaved embryos (Control: 21%; NGF: 22%; P=0.16) or the hatched blastocyst rate at Day 8 (Control: 53%; NGF: 55%; P=0.67). These results show that NGF can act directly on the oocyte during fertilization to alter subsequent development, specifically through increased embryonic cleavage rates. Further studies are needed to assess different dosages of NGF in order to mitigate the detrimental effects of heat stress on oocyte competence for use in IVF. Follow-up studies using a whole-animal model are needed to understand the clinical relevance of these findings in the ability of embryos to promote maternal recognition of pregnancy.

2016 ◽  
Vol 94 (10) ◽  
pp. 4447-4451 ◽  
Author(s):  
M. Crispo ◽  
P. C. dos Santos-Neto ◽  
M. Vilariño ◽  
A. P. Mulet ◽  
A. de León ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 365-365
Author(s):  
Lucas Gonçalves ◽  
Muller C Martins ◽  
Natalia Arle ◽  
Rafaela T Torres ◽  
Luisa Migilo ◽  
...  

Abstract The aim of this study was to evaluate the supplementation of Nerve Growth Factor (β-NGF) in the maturation medium in in vitro embryo production routines. Antral follicles were aspirated from ovaries of cows obtained from slaughterhouses and then oocytes were selected for quality (grades I and II) for in vitro maturation and subjected to 4 successive in vitro embryo production routines (IVEP). Supplementation of 100 ng of β-NGF was performed in the oocyte maturation medium 22 hours before in vitro fertilization. 48 hours after fertilization of the oocytes, an analysis was made of their cleavage rate by counting blastomeres with the aid of a stereoscopic microscope (cleavage rate = number of embryos / number of initial oocytes). Seven days after fertilization, the blastocyst rate was determined through the relation to the number of oocytes that started cleavage and reached this stage of development (blastocyst rate = number of blastocyst / number of oocytes that started cleavage). To verify the existence of a difference between the supplemented and the non-supplemented groups, the paired T test was applied, using the Excel / Action software (Microsoft). In vitro embryo production routines supplemented with β-NGF in the maturation medium had, on average, a higher cleavage rate (P = 0.0072) and a higher blastocyst rate (P = 0.0033) compared to non-supplemented routines with β-NGF. In this study was demonstrated that Nerve Growth Factor supplementation in the maturation medium improves the efficiency of in vitro embryo production in cattle, and this protein has a probable action in the oocyte maturation process.


2012 ◽  
Vol 109 (6) ◽  
pp. 2009-2014 ◽  
Author(s):  
A. Manca ◽  
S. Capsoni ◽  
A. Di Luzio ◽  
D. Vignone ◽  
F. Malerba ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Scott M. Thompson ◽  
Danielle E. Jondal ◽  
Kim A. Butters ◽  
Bruce E. Knudsen ◽  
Jill L. Anderson ◽  
...  

The purposes of this study were to test the hypothesis that heat stress and hepatic thermal ablation induce nerve growth factor inducible (VGF) and to determine intrahepatic versus systemic VGF expression induced by thermal ablation in vivo and in patients. Hepatocytes and HCC cells were subjected to moderate (45°C) or physiologic (37°C) heat stress for 10 min and assessed for VGF expression at 0‐72 h post-heat stress (n ≥ 3 experiments). Orthotopic N1S1 HCC-bearing rats were randomized to sham or laser thermal ablation (3 W × 90 s), and liver/serum was harvested at 0‐7 days postablation for analysis of VGF expression (n ≥ 6 per group). Serum was collected from patients undergoing thermal ablation for HCC (n = 16) at baseline, 3‐6, and 18‐24 h postablation and analyzed for VGF expression. Data were analyzed using ordinary or repeated-measures one-way analysis of variance and post hoc pairwise comparison with Dunnett’s test. Moderate heat stress induced time-dependent VGF mRNA (3- to 15-fold; p < 0.04) and protein expression and secretion (3.1- to 3.3-fold; p < 0.05). Thermal ablation induced VGF expression at the hepatic ablation margin at 1 and 3 days postablation but not remote from the ablation zone or distant intrahepatic lobe. There was no detectable serum VGF following hepatic thermal ablation in rats and no increase in serum VGF following HCC thermal ablation in patients at 3‐6 and 18‐24 h postablation compared to baseline (0.71- and 0.63-fold; p = 0.27 and p = 0.16, respectively). Moderate heat stress induces expression and secretion of VGF in HCC cells and hepatocytes in vitro, and thermal ablation induces local intrahepatic but not distant intrahepatic or systemic VGF expression in vivo.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 82-83
Author(s):  
Kayla Jones

Abstract Nerve growth factor (NGF) beta is a seminal plasma protein that has been associated with sire conception rates in cattle. Previous research showed that the administration of NGFβ, via culture media, to cows resulted in improved conceptus development. Though this finding was thought to be an indirect effect of improved corpus luteum (CL) function, questions raised if NGFβ could act directly on the embryo to promote development. This work seeks to determine the effect of NGFβ supplementation during in-vitro fertilization (IVF) on cleavage and blastocyst rates. How does the administration of NGFβ in culture media affect cleavage and blastocyst rates during in-vitro fertilization? Abattoir-derived bovine ovaries were used for recovery of cumulus-oocyte complexes (COC). Selected COC were placed in the maturation medium. Expanded COC were inseminated with frozen-thawed spermatozoa, and IVF media was supplemented with either 0 ng/mL or 100 ng/mL NGF. Presumptive zygotes were transferred to development medium in a tri-gas chamber with 5% CO2, 5% O2, and 90% N2 in a humidified atmosphere at 39°C, mimicking the bovine uterine climate, until 8 days. Treatment with NGFβ increased the percentage of cleaved embryos at 48 hours and the percentage of hatched embryos at 8 days per oocyte. Treatment of NGFβ did not alter the percentage of blastocysts per cleaved embryo or the percentage of hatched blastocysts. These results show that the NGFβ can act directly on the embryo during fertilization to alter embryonic development, specifically embryonic cleavage rates. Future in vivo studies should assess the downstream effects of NGF treatment on conception rates in cattle.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 51-51
Author(s):  
Kayla Jones

Abstract Nerve growth factor, (NGF) beta is a seminal plasma protein that has been associated with sire conception rates in cattle. Previous research showed that the administration of NGFβ, via culture media, to cows resulted in improved conceptus development. Though this finding was thought to be an indirect effect of improved corpus luteum (CL) function, questions raised if NGFβ could act directly on the embryo to promote development. This work seeks to determine the effect of NGFβ supplementation during in-vitro fertilization (IVF) on cleavage and blastocyst rates. How does the administration of NGFβ in culture media affect cleavage and blastocyst rates during in-vitro fertilization? Abattoir-derived bovine ovaries were used for recovery of cumulus-oocyte complexes (COC). Selected COC were placed in the maturation medium. Expanded COC were inseminated with frozen-thawed spermatozoa, and IVF media was supplemented with either 0 ng/mL or 100 ng/mL NGF. Presumptive zygotes were transferred to development medium in a tri-gas chamber with 5% CO2, 5% O2, and 90% N2 in a humidified atmosphere at 39°C, mimicking the bovine uterine climate, until 8 days. Treatment with NGFβ increased the percentage of cleaved embryos at 48 hours and the percentage of hatched embryos at 8 days per oocyte. Treatment of NGFβ did not alter the percentage of blastocysts per cleaved embryo or the percentage of hatched blastocysts. These results show that the NGFβ can act directly on the embryo during fertilization to alter embryonic development, specifically embryonic cleavage rates. Future in vivo studies should assess the downstream effects of NGF treatment on conception rates in cattle.


Sign in / Sign up

Export Citation Format

Share Document