99 Effect of LH contamination in commercial formulations on FSH-induced follicle growth in heifers immunised against gonadotrophin-releasing hormone

2022 ◽  
Vol 34 (2) ◽  
pp. 286
Author(s):  
N. Pereira ◽  
L. Martins ◽  
R. Moura ◽  
L. Dias ◽  
M. Peixer ◽  
...  
1990 ◽  
Vol 127 (2) ◽  
pp. 273-283 ◽  
Author(s):  
H. M. Picton ◽  
C. G. Tsonis ◽  
A. S. McNeilly

ABSTRACT The hypogonadotrophism model induced by the chronic administration of gonadotrophin-releasing hormone (GnRH) agonist was used to investigate the effects of different concentrations of FSH with or without LH pulses on the stimulation of follicular development in the ewe. Continuous administration of an agonist (buserelin) by osmotic minipump to thirty-six Welsh Mountain ewes from the early luteal phase for 5 weeks resulted in a sustained suppression of the plasma concentration of FSH and inhibited the pulsatile release of LH. The inhibition of gonadotrophin secretion was due to the desensitization and/or down-regulation of pituitary gonadotroph function, since the agonist-treated animals showed no response to a challenge of 1 μg GnRH. During week 6 of agonist treatment, ewes were infused with either 4-hourly pulses of ovine LH (9 μg/pulse), low concentrations of ovine FSH (3 μg/h) or high concentrations of FSH (9 μg/h) alone or with 4-hourly pulses of LH. After 5 days of gonadotrophin infusion, there was no difference between the mean number of follicles per ewe from the animals treated with LH alone, low concentrations of FSH with or without LH pulses or the high concentration of FSH alone compared with the mean number of follicles from control ewes on day 8 of the luteal phase. Infusion of the high concentration of FSH alone stimulated the development of an increased number of large oestrogenic follicles (follicles > 2·5 mm in diameter and secreting > 3·7 nmol oestradiol/h in vitro) compared with control ewes. The addition of high-amplitude LH pulses to the infusion of the high concentration of FSH prevented follicles developing beyond 2·5 mm in diameter, but doubled the number of small follicles (≤2·5 mm) present in the ovaries. These results show that normal follicular development can be induced by physiological concentrations of FSH alone in the absence of pulsatile LH release. The addition of high-amplitude LH pulses antagonized this stimulatory effect of FSH on follicle growth in the ewe. Journal of Endocrinology (1990) 127, 273–283


1991 ◽  
Vol 128 (3) ◽  
pp. 449-456 ◽  
Author(s):  
H. M. Picton ◽  
A. S. McNeilly

ABSTRACT Ewes chronically treated with gonadotrophin-releasing hormone (GnRH) agonist were used to investigate the importance of the peripheral concentration of LH in FSH-stimulated follicular development. Twenty-four Welsh Mountain ewes were treated with two agonist implants containing 3·3 mg buserelin. During week 6 of treatment all the ewes were given a 72-h continuous infusion of ovine FSH alone (3 μg/h) or FSH with large (7·5 μg)- or small (2·5 μg) amplitude pulses of ovine LH delivered at 4-hourly intervals. The importance of baseline LH throughout the FSH infusion was evaluated in six animals which were treated with a specific antiserum against bovine LH (LH-AS) 15–20 h before the start of FSH treatment. In the absence of LH-AS, infusion of FSH alone or with large or small pulses of LH stimulated the development of a normal number of small follicles (≤ 2·5 mm in diameter) and large follicles (> 2·5 mm in diameter). These follicles had normal diameter and steroid secretion compared with control ewes on day 8 of the luteal phase. In contrast, the animals pretreated with LH-AS developed no follicles > 2·0 mm in diameter but the number of small follicles per ewe was significantly (P < 0·05) increased. These results support the hypothesis that FSH in the absence of pulsatile LH release stimulates preovulatory follicular development in ewes treated with GnRH agonist. The follicular response to LH pulses of different amplitude is dependent on both the stage of development of the follicle and the peripheral concentration of FSH. The endogenous basal level of LH present throughout the FSH infusion is essential for FSH to induce follicle growth beyond > 2·5 mm in diameter. Journal of Endocrinology (1991) 128, 449–456


2021 ◽  
Vol 33 (2) ◽  
pp. 149
Author(s):  
N. E. S. Pereira ◽  
L. P. Martins ◽  
R. M. Moura ◽  
L. R. O. Dias ◽  
M. A. S. Peixer ◽  
...  

In the present study, we evaluated the ovarian response to exogenous FSH stimulation in the absence of endogenous LH, using as experimental model heifers immunized against GnRH. Pubertal, cycling Nelore (Bos indicus) heifers were allocated into three experimental groups: (1) non-immunized, FSH stimulated (B−FSH+, n=5), (2) immunized, FSH stimulated (B+FSH+, n=5), and (3) immunized, nonstimulated (B+FSH−, n=5). Active immunization was obtained by 3 subcutaneous injections of 1.0mL anti-gonadotrophin-releasing hormone vaccine (Bopriva, Zoetis), given at 20-day intervals. Effective immunization was characterised by the absence of growing follicles &gt;4mm or corpora lutea (CL) on the ovaries. Follicular wave emergence was synchronized in groups B+FSH+ and B+FSH− by follicle ablation, and in group B−FSH+ by using of a protocol consisting of an injection of 2mg of oestradiol benzoate and 0.5mg of sodium cloprostenol, and insertion of an intravaginal progesterone (P4) device (1g). Four days later (Day 0), groups B−FSH+ and B+FSH+ received 100mg of NIH-FSH-P1 (Folltropin-V, Vetoquinol), injected twice-a-day in 8 decreasing doses, and group B+FSH− received saline. Transvaginal ultrasonography (7.5MHz) was performed daily from Days 0 to 4 and the number and size of follicles were recorded. P4 devices of group B-FSH+ were removed at Day 3. All heifers underwent ovum pickup (OPU) at Day 4, and the cumulus–oocyte complexes (COC) recovered were graded for quality. Viable COC were used for invitro embryo production. The heifers were re-evaluated at Day 11 (7 days after OPU). The GLIMMIX procedure from SAS (SAS Institute Inc.) with repeated-measure statement was used to analyse the effects of group, day, and interactions; and the Chi-squared method was used to analyse binomial data. The results are shown as mean±s.e.m. A progressive increase in average follicle size was observed in groups B−FSH+ and B+FSH+ (P&lt;0.0001), whereas no follicle growth was observed in group B+FSH− (P&gt;0.05). Follicle growth rate was similar between groups B−FSH+ and B+FSH+, and both were greater than group B+FSH− (1.2±0.2 and 1.1±0.1 vs. 0.0±0.1 mm/d; P&lt;0.0001). However, the smaller follicle size in group B+FSH+ at Day 0 resulted in smaller follicle size at Day 4, compared with group B−FSH+ (2.4±0.1 vs. 3.6±0.2 and 6.9±0.7 vs. 8.2±0.6mm, respectively; P&lt;0.05). There was no (P&gt;0.05) difference in the number of COC recovered among groups. The group B+FSH+ yielded fewer (P&lt;0.01) COC of grades I and II and more (P&lt;0.01) degenerated oocytes than groups B−FSH+ and B+FSH− (41.2% vs. 80.0% and 68.0%, and 34.0% vs. 19.8 and 7.0%, respectively). Nevertheless, blastocyst rates were similar (P&gt;0.05) for B−FSH+, B+FSH+, and B+FSH− (57.1%, 45.9% and 44.2%, respectively). Residual follicles or luteal tissue were observed after OPU only in group B−FSH+, resulting in a significant difference in the size of ovaries between Days 0 and 11, compared with that of groups B+FSH+ and B+FSH− (3.7±1.4 vs. 0.2±0.2 and −0.2±0.2cm2, respectively; P&lt;0.05). In summary, exogenous FSH supported follicle growth but did not improve oocyte quality in heifers immunized against GnRH. This research was funded by CAPES.


1990 ◽  
Vol 126 (2) ◽  
pp. 297-307 ◽  
Author(s):  
H. M. Picton ◽  
C. G. Tsonis ◽  
A. S. McNeilly

ABSTRACT The study investigated the relationship between the plasma concentration of FSH and the stimulation of preovulatory follicle growth in vivo in ewes chronically treated with the gonadotrophin-releasing hormone (GnRH) agonist buserelin (HOE 766). Welsh Mountain ewes with regular oestrous cycles were treated for 6 weeks with two discs implants placed s.c., each containing 5 mg of the agonist in a matrix of polyhydroxybutyric acid. Treatment with the agonist for 35 days produced a sustained suppression of the plasma concentration of FSH, stopped the pulsatile release of LH and prevented follicular development beyond 2·5 mm diameter. There was no difference between the total number of follicles > 1·0 mm diameter present in the ovaries of GnRH agonist-treated ewes and day 8 luteal phase control ewes. During the sixth week of agonist treatment ewes were infused with ovine FSH (6 μg NIADDK-oFSH16/h) in the presence of only basal concentrations of LH. After 24, 48, 72 or 120 h of FSH infusion, the mean number of follicles > 1 ·0 mm diameter per ewe was not significantly different between treated and control animals. Infusion of FSH caused a timedependent increase in (1) the number of follicles per ovary >2·5 mm, (2) the mean diameter of these follicles and (3) the proportion of the large follicles which could be classified as oestrogenic (> 3·7 nmol oestradiol/follicle per h in vitro). Injection of human chorionic gonadotrophin (750IU i.m.) after 120 h of FSH infusion caused the majority of these large follicles to ovulate and form apparently normal corpora lutea. These results indicate that, in the absence of pulsatile LH, FSH stimulates the growth of normal large oestrogenic follicles which, when stimulated, ovulate to produce viable corpora lutea. Journal of Endocrinology (1990) 126, 297–307


2006 ◽  
Vol 29 (5) ◽  
pp. 373-377 ◽  
Author(s):  
P. GONZALEZ ANOVER ◽  
A. GONZALEZ-BULNES ◽  
A. VEIGA-LOPEZ ◽  
R. M. GARCIA-GARCIA ◽  
A. S. MCNEILLY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document