scholarly journals Frequency stabilization using fuzzy logic based controller for multi-area power system

2007 ◽  
Vol 25 (1) ◽  
pp. 22 ◽  
Author(s):  
H.D. Mathur ◽  
H.V. Manjunath

In this paper, a fuzzy logic controller is proposed for load frequency control problem of electrical power system. The fuzzy controller is constructed as a set of control rules and the control signal is directly deduced from the knowledge base and the fuzzy inference. The study has been designed for a two area interconnected power system. A comparison among a conventional proportional integral (PI) controller, some other fuzzy gain scheduling controllers and the proposed fuzzy controller is presented and it has been shown that proposed controller can generate the best dynamic response following a step load change. Robustness of proposed controller is achieved by analyzing the system response with varying system parameters.

2018 ◽  
Vol 17 (1) ◽  
pp. 107
Author(s):  
Gusti Made Ngurah Christy Aryanata ◽  
I Nengah Suweden ◽  
I Made Mataram

A good electrical power system is a system that can serve the load in a sustainable and stable voltage and frequency. Changes in frequency occur due to the demand of loads that change from time to time. The frequency setting of the PLTG power system depends on the active power charge in the system. This active power setting is done by adjusting the magnitude of the generator drive coupling. The frequency setting is done by increasing and decreasing the amount of primary energy (fuel) and carried on the governor. Simulation in governor analysis study as load frequency control at PLTG using fuzzy logic controller is done by giving four types of cultivation that is 0,1 pu, 0,2pu, 0,3 pu and 0,4 pu. The simulation is done to compare the dynamic frequency response output and the resulting stability time using fuzzy logic controller with PI controller. Based on the results of comparative analysis conducted to prove that governor as load frequency control using fuzzy logic control is better than using PI controller. This can be seen from the output response frequency and time stability.


2012 ◽  
Vol 622-623 ◽  
pp. 80-85 ◽  
Author(s):  
Aqeel S. Jaber ◽  
Abu Zaharin B. Ahmad ◽  
Ahmed N. Abdalla

One of the most important rules in electric power system operation and control is Load Frequency Controller (LFC). Many problems are subject to LFC such as a generating unit is suddenly disconnected by the protection equipment and suddenly large load is connected or disconnected. The frequency gets deviated from nominal value when the real power balance is harmed due to disturbances.LFC is responsible for load balancing and restoring the natural frequency to its natural position. In this paper, PSO-fuzzy logic technique for Load Frequency Control system was proposed. PSO optimization method is used to tuning the input and output gains for the fuzzy controller. The proposed method has been tested on two symmetrical thermal areas of an interconnected electrical power system. The simulation results are carried out in term of effectiveness of the frequency time response on its damping and compared it to common PID controller. The results show the performances of the proposed controller have quite promising compared to PID controller.


2012 ◽  
Vol 1 (2) ◽  
pp. 85-95 ◽  
Author(s):  
Yogendra Arya ◽  
H.D. Mathur ◽  
S.K. Gupta

This paper presents a fuzzy logic controller for load frequency control (LFC) of multi-area interconnected power system. The study has been designed for a three area interconnected thermal power stations with generation rate constraint (GRC). Simulation results of the proposed fuzzy controller are presented and it has been shown that proposed controller can generate the good dynamic response following a step load change. Robustness of proposed controller is achieved by analyzing the system response with varying system parameters.


2020 ◽  
Vol 39 (6) ◽  
pp. 8273-8283
Author(s):  
N. Kirn Kumar ◽  
V. Indra Gandhi

As the world is moving towards green energy generation to reduce the pollution by renewable sources such as wind, solar, geothermal and more. These sources are intermittent in nature, to coordinate and control with traditional power generating units a control technique is necessary. This paper mainly focuses on the design of fuzzy based classical controller using a PSO algorithm for optimal controller gains to control the frequency variations in island hybrid power system. The considered mathematical model comprises of a diesel generating model, wind turbine generator and a battery storage system. Fuzzy is an intelligent controller which is designed with trial and error rules or on the basis of past experience provided by experts or by optimization methods for optimized gains using computational algorithms. To give best solution for these kinds of problems with FLCs traditional controllers are integrated with fuzzy logic. The PSO algorithm is applied to tune the classical controller gains to decrease the frequency deviation of the island power system, during the different load and wind disturbances. The Fuzzy PID classical controller shows the best performance compared with the only fuzzy and Fuzzy-PI controller configurations by illustrating the under shoot, overshoot and settling time and the proposed method is robust for various loading conditions and different wind changes.


Author(s):  
Pasala Gopi ◽  
P. Linga Reddy

The response of the load frequency control problem in multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load.  This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively.  The response of the load frequency control problem in a multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations..


Sign in / Sign up

Export Citation Format

Share Document