L1 adaptive load frequency control of single-area electrical power system

Author(s):  
Ayman Alhejji
Author(s):  
Pasala Gopi ◽  
P. Linga Reddy

The response of the load frequency control problem in multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load.  This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively.  The response of the load frequency control problem in a multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations..


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5701
Author(s):  
Mokhtar Shouran ◽  
Fatih Anayi ◽  
Michael Packianather

This paper proposes a design of Sliding Mode Control (SMC) for Load Frequency Control (LFC) in a two-area electrical power system. The mathematical model design of the SMC is derived based on the parameters of the investigated system. In order to achieve the optimal use of the proposed controller, an optimisation tool called the Bees Algorithm (BA) is suggested in this work to tune the parameters of the SMC. The dynamic performance of the power system with SMC employed for LFC is studied by applying a load disturbance of 0.2 pu in area one. To validate the supremacy of the proposed controller, the results are compared with those of recently published works based on Fuzzy Logic Control (FLC) tuned by Teaching–Learning-Based Optimisation (TLBO) algorithm and the traditional PID optimised by Lozi map-based Chaotic Optimisation Algorithm (LCOA). Furthermore, the robustness of SMC-based BA is examined against parametric uncertainties of the electrical power system by simultaneous changes in certain parameters of the testbed system with 40% of their nominal values. Simulation results prove the superiority and the robustness of the proposed SMC as an LFC system for the investigated power system.


2018 ◽  
Vol 17 (1) ◽  
pp. 107
Author(s):  
Gusti Made Ngurah Christy Aryanata ◽  
I Nengah Suweden ◽  
I Made Mataram

A good electrical power system is a system that can serve the load in a sustainable and stable voltage and frequency. Changes in frequency occur due to the demand of loads that change from time to time. The frequency setting of the PLTG power system depends on the active power charge in the system. This active power setting is done by adjusting the magnitude of the generator drive coupling. The frequency setting is done by increasing and decreasing the amount of primary energy (fuel) and carried on the governor. Simulation in governor analysis study as load frequency control at PLTG using fuzzy logic controller is done by giving four types of cultivation that is 0,1 pu, 0,2pu, 0,3 pu and 0,4 pu. The simulation is done to compare the dynamic frequency response output and the resulting stability time using fuzzy logic controller with PI controller. Based on the results of comparative analysis conducted to prove that governor as load frequency control using fuzzy logic control is better than using PI controller. This can be seen from the output response frequency and time stability.


2007 ◽  
Vol 25 (1) ◽  
pp. 22 ◽  
Author(s):  
H.D. Mathur ◽  
H.V. Manjunath

In this paper, a fuzzy logic controller is proposed for load frequency control problem of electrical power system. The fuzzy controller is constructed as a set of control rules and the control signal is directly deduced from the knowledge base and the fuzzy inference. The study has been designed for a two area interconnected power system. A comparison among a conventional proportional integral (PI) controller, some other fuzzy gain scheduling controllers and the proposed fuzzy controller is presented and it has been shown that proposed controller can generate the best dynamic response following a step load change. Robustness of proposed controller is achieved by analyzing the system response with varying system parameters.


Author(s):  
Namburi Nireekshana ◽  

Electrical Power systems are paramount intricate system which built by human beings, therefore this type of systems should maintain stable and to get upgrading for upcoming days need multiple control techniques. In these convoluted power systems voltage frequency plays a major role .Hence frequency has to control proper. To control frequency of voltage has three control techniques are primary, secondary and also tertiary frequency control techniques .Thereby second technique also known as Load Frequency Control[1], It is to maintain the desirable frequency even after occurrence of disturbance. Several techniques have been used (like classical, adaptive) to mitigate the power flow disturbances, but drawbacks (parameters tuning, cyber-attacks) are having in these methods. This paper proposes soft computing techniques to build up the operation, control and then stability of the electrical power system.


Author(s):  
Yannis L. Karnavas

The load frequency control (LFC) is to maintain the power balance in the electrical power system such that the system’s frequency deviates from its nominal value to within specified limits and according to practically acceptable dynamic performance of the system. The control strategy evolved may also result in overall high efficiency (fuel saving) and minimum additional equipment to avoid cost, maintenance etc. The supplementary controller i.e. of a diesel or steam turbine generating unit, called the load frequency controller, may satisfy these requirements. The function of the controller is to generate, raise or lower command signals to the speed-gear changer of the prime mover (i.e. diesel engine) in response to the frequency error signal by performing mathematical manipulations of amplification and integration of this signal. The speed-gear changer must not act too fast, as it will cause wear and tear of the engine and, also, should not act too slow, as it will deteriorate system’s performance. Therefore, an optimum load frequency controller is required for satisfactory operation of the system. In this Chapter, intelligent controllers for the LFC problem are analyzed and discussed. The use of any single technique or even a combination of genetic algorithms, fuzzy logic and neural networks is explored instead of conventional methods.


2012 ◽  
Vol 622-623 ◽  
pp. 80-85 ◽  
Author(s):  
Aqeel S. Jaber ◽  
Abu Zaharin B. Ahmad ◽  
Ahmed N. Abdalla

One of the most important rules in electric power system operation and control is Load Frequency Controller (LFC). Many problems are subject to LFC such as a generating unit is suddenly disconnected by the protection equipment and suddenly large load is connected or disconnected. The frequency gets deviated from nominal value when the real power balance is harmed due to disturbances.LFC is responsible for load balancing and restoring the natural frequency to its natural position. In this paper, PSO-fuzzy logic technique for Load Frequency Control system was proposed. PSO optimization method is used to tuning the input and output gains for the fuzzy controller. The proposed method has been tested on two symmetrical thermal areas of an interconnected electrical power system. The simulation results are carried out in term of effectiveness of the frequency time response on its damping and compared it to common PID controller. The results show the performances of the proposed controller have quite promising compared to PID controller.


Sign in / Sign up

Export Citation Format

Share Document