Soil microbial biomass, metabolic quotient, and carbon and nitrogen mineralisation in 25-year-old Pinus radiata agroforestry regimes

Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 491 ◽  
Author(s):  
S. Saggar ◽  
C. B. Hedley ◽  
G. J. Salt

To understand the effects of agroforestry on soil biological processes we assessed the conditions in Pinus radiata plantations of 50, 100, 200, and 400 stems/ha after 25 years of growth, and in a grassland. Agroforestry resulted in a 15–25% decline in soil organic C and N compared with grassland, and had a significant negative influence on soil microbial biomass. There was less microbial C and N in soils under 50–400 stems/ha of P. radiata than in soils under grassland (0 stems/ha). Soil carbon decomposition and microbial activity were measured by trapping the carbon dioxide produced by incubating soils over a 60-week period. The results showed that soil C decomposition rates were ~1.5 times as much (c. 15 mg CO2-C/kg soil) in soil from grassland as in that from plots with 50 or100 stems/ha (c. 10 mg CO2-C/kg soil), and were further reduced to one half (c. 5.5 mg CO2-C/kg soil) in the plots with 200 or 400 stems/ha. The soils under P. radiata gave off less carbon dioxide per unit of biomass (the metabolic quotient) than soils under grassland. These shifts in microbial biomass and its metabolic quotients appear to be associated with differences in the quantity and ‘quality’ of inputs and soil organic matter decomposition rates, and to reflect the land use change from grassland to forest. Given the general ability of soil microbial biomass to recolonise depopulated areas after tree harvest, we see no problem in restoring populations of these soil organisms vital in controlling nutrient cycling after tree felling, provided adequate adjustments to soil pH are made.

1990 ◽  
Vol 30 (3) ◽  
pp. 365 ◽  
Author(s):  
PJ Haines ◽  
NC Uren

A long-term field experiment was set up in 1981 in north-eastern Victoria to determine the effects of conservation tillage farming on agronomic and soil properties. Conventional cultivation was compared with direct drilling, and stubbles retained from the previous crop were compared with burning under direct drilling. Wheat was grown continuously over the 7 years of the experiment. Organic carbon (C), total nitrogen (N), soil microbial biomass and earthworm populations were measured. When samples were taken incrementally down the soil profile, there was a significant concentration gradient of organic matter under direct drilling. In the surface 2.5 cm, biomass C and N, and N mineralisation were 35, 30 and 62% greater, respectively, than under conventional cultivation. Direct drilling into retained stubble did not significantly increase organic C or total N. Of the estimated 7.8 t C/ha added to the soil from conserved crop stubbles, 4% was retained in the top 7.5 cm at the time of sampling. Organic C, total N and biomass C and N decreased with depth in both treatments. Microbial biomass varied considerably with season. The biomass of earthworms in the top 10 cm, under direct drilling, was more than twice that of conventional cultivation, while total worm numbers increased significantly (P<0.05), from 123 to 275/m2, when wheat stubble was retained with direct drilling compared to stubble burning.


2009 ◽  
Vol 41 (8) ◽  
pp. 1605-1611 ◽  
Author(s):  
Jeff S. Coyle ◽  
Paul Dijkstra ◽  
Richard R. Doucett ◽  
Egbert Schwartz ◽  
Stephen C. Hart ◽  
...  

1998 ◽  
Vol 78 (2) ◽  
pp. 283-290 ◽  
Author(s):  
P. Rochette ◽  
E. G. Gregorich

Application of manure and fertilizer affects the rate and extent of mineralization and sequestration of C in soil. The objective of this study was to determine the effects of 3 yr of application of N fertilizer and different manure amendments on CO2 evolution and the dynamics of soil microbial biomass and soluble C in the field. Soil respiration, soluble organic C and microbial biomass C were measured at intervals over the growing season in maize soils amended with stockpiled or rotted manure, N fertilizer (200 kg N ha−1) and with no amendments (control). Manure amendments increased soil respiration and levels of soluble organic C and microbial biomass C by a factor of 2 to 3 compared with the control, whereas the N fertilizer had little effect on any parameter. Soil temperature explained most of the variations in CO2 flux (78 to 95%) in each treatment, but data from all treatments could not be fitted to a unique relationship. Increases in CO2 emission and soluble C resulting from manure amendments were strongly correlated (r2 = 0.75) with soil temperature. This observation confirms that soluble C is an active C pool affected by biological activity. The positive correlation between soluble organic C and soil temperature also suggests that production of soluble C increases more than mineralization of soluble C as temperature increases. The total manure-derived CO2-C was equivalent to 52% of the applied stockpiled-manure C and 67% of the applied rotted-manure C. Estimates of average turnover rates of microbial biomass ranged between 0.72 and 1.22 yr−1 and were lowest in manured soils. Manured soils also had large quantities of soluble C with a slower turnover rate than that in either fertilized or unamended soils. Key words: Soil respiration, greenhouse gas, soil carbon


2006 ◽  
Vol 57 (4) ◽  
pp. 468-475 ◽  
Author(s):  
P. Dijkstra ◽  
O. V. Menyailo ◽  
R. R. Doucett ◽  
S. C. Hart ◽  
E. Schwartz ◽  
...  

2014 ◽  
Vol 34 (13) ◽  
Author(s):  
张静 ZHANG Jing ◽  
马玲 MA Ling ◽  
丁新华 DING Xinhua ◽  
陈旭日 CHEN Xuri ◽  
马伟 MA Wei

2013 ◽  
Vol 43 (9) ◽  
pp. 777-784 ◽  
Author(s):  
Ya-Lin Hu ◽  
Kangho Jung ◽  
De-Hui Zeng ◽  
Scott X. Chang

Chronic nitrogen (N) and (or) sulfur (S) deposition to boreal forests in the Athabasca oil sands region (AOSR) in Alberta, Canada, has been caused by oil sands mining and extraction/upgrading activities. It is important that we understand the response of microbial community function to chronic N and S deposition as microbial populations mediate soil carbon (C) and N cycles and affect ecosystem resilience. To evaluate the impact of N and (or) S deposition on soil microbial community functions, we conducted a simulated N and S deposition experiment in a boreal mixedwood forest with the following four treatments: control (CK), N addition (+N, 30 kg N·ha−1 as NH4NO3), S addition (+S, 30 kg S·ha−1 as NaSO4), and N plus S addition (+NS, 30 kg N·ha−1 + 30 kg S·ha−1), from 2006 to 2010. Nitrogen and (or) S deposition did not change soil organic carbon, total N, dissolved organic C and N, or soil microbial biomass C and N. Soil microbial community-level physiological profiles, however, were strongly affected by 5 years of N and (or) S addition. Soil β-glucosidase activity in the +NS treatment was greater than that in the +S treatment, and S addition decreased soil arylsulfatase; however, urease and dehydrogenase activities were not affected by the simulated N and (or) S deposition. Our data suggested that N and (or) S deposition strongly affected soil microbial community functions and enzymatic activities without changing soil microbial biomass in the studied boreal forest.


Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


Sign in / Sign up

Export Citation Format

Share Document