The influence of low rates of air-dried biosolids on yield and phosphorus and zinc nutrition of wheat (Triticum durum) and barley( Hordeum vulgare)

Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 293 ◽  
Author(s):  
Karin Weggler-Beaton ◽  
Robin D. Graham ◽  
Michael J. McLaughlin

In field studies in 1992 and 1993, biosolid applications of 2 t/ha with supplements of mineral N and P were compared with a standard mineral fertiliser application (20 kg N/ha, 20 kg P/ha, 1.8–2.8 kg Zn/ha, 1.4–1.9 kg Cu/ha, 0.5–4 kg Mn/ha) on 4 soil types. Biosolid rates from 2 to 10 t/ha were applied in 1993. Shoot dry matter production at different stages of plant development (9 and 15 weeks after sowing) and grain production of Triticum durum and Hordeum vulgare, as well as nutrient concentration in shoots and grain, were taken as indicators for comparing nutrient availability of the 2 sources. A 2-t biosolid application was found to enhance dry-matter production and yield to the same extent as a mineral fertiliser application of 20 kg N/ha, 20 kg P/ha, and 1.8–2.8 kg Zn/ha. In some crop rotations and on sites with a high yield potential, additional nitrogen with 2 t biosolids/ha would be necessary to achieve such yields. However, development of durum wheat fertilised with 2 t biosolids was slower and P uptake lower than with mineral fertiliser until late booting. Durum wheat fertilised with 4 t biosolids showed similar P-uptake values as plants fertilised with the mineral fertiliser. The Zn-uptake of plants was positively correlated with biosolid application rates, showing a linear relationship. A 2-t biosolid application alleviated micronutrient deficiency to the same extent as the same rate of Zn (and Cu) given in mineral form.

2005 ◽  
Vol 62 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Rossini Mattos Corrêa ◽  
Clístenes Williams Araújo do Nascimento ◽  
Silvana Keely de Sá Souza ◽  
Fernando José Freire ◽  
Gleibson Barbosa da Silva

Crops in general make poor use of phosphorous fertilizer and, as a result, recommended rates and production costs are very high. Phosphorus can be made more readily available to plants by proper management of phosphate fertilization, selecting both, type of fertilizer and application method. This study was carried out to evaluate the efficiency of the natural Gafsa rock phosphate and the triple superphosphate on dry matter production and P uptake by corn plants cultivated in a greenhouse. Fertilizers were applied localized and broadcast/incorporated on to two soils with contrasting phosphorus capacity factors (PCF). Rock phosphate broadcast application was as efficient as triple superphosphate in increasing corn plant dry matter in the Tropudult, with lower PCF. This effect was not observed on the Haplustox, owing to the lower P solubility due to the higher Ca concentration in this soil. Triple superphosphate rates increased plant P uptake in both soils and for both application forms. Rock phosphate resulted in higher P-content in plants, but only for broadcast application on the Ultisol.


2018 ◽  
Vol 221 ◽  
pp. 358-367 ◽  
Author(s):  
Conxita Royo ◽  
Karim Ammar ◽  
Christian Alfaro ◽  
Susanne Dreisigacker ◽  
Luis Fernando García del Moral ◽  
...  

2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


1996 ◽  
Vol 180 (2) ◽  
pp. 173-181 ◽  
Author(s):  
I. Cakmak ◽  
N. Sari ◽  
H. Marschner ◽  
M. Kalayci ◽  
A. Yilmaz ◽  
...  

2021 ◽  
Author(s):  
Srinivasan G ◽  
Gobi R ◽  
A. Balasubramanian ◽  
S. Sathiyamurthi

Abstract Background The productivity of pulse crop is low due to cultivation on agriculturally marginal and sub marginal lands under poor management. So, it needs earnest attention in adaption of desirable production technologies to exploit the yield potential of the pulses and it can be possible by application of fertilizers, nipping and foliar application of nutrients.In this view, aresearch was conducted to studyyield maximization, agronomic efficiency and nutrient uptake pattern with nipping and nutrient management practices in irrigated pigeonpea.Methods Field experiment was conducted at farmer’s field, Palacode, Palacode Taluk, Dharmapuri District.The pigeonpea seeds were sown by adapting a spacing of 45 × 30 cm. Entire dose of N, P2O5 and K2O (25: 50: 25 kg)were applied basally and the foliar spraying of 0.5 per cent Micronutrient mixture was done as per treatment schedule on 30th& 45th days after sowing using Knapsack Sprayer with the spray fluid of 500 lit. ha-1.Results The results revealed that the application of T9 (125% RDF + Nipping + Micronutrient) recorded significantly higher dry matter production, yield and nutrient uptake.The least values were recorded under the treatment T1 (Control).


2019 ◽  
Vol 43 ◽  
Author(s):  
Sara Ramos dos Santos ◽  
José Ferreira Lustosa Filho ◽  
Leonardus Vergütz ◽  
Leônidas Carrijo Azevedo Melo

ABSTRACT The use of fertilizers with some degree of protection of the phosphate ions can reduce soil adsorption and increase the absorption by plants, increasing the efficiency of phosphorus (P) fertilization. This study aimed to evaluate the performance of a phosphate fertilizer associated with biochar in granules in a P-fixing soil in a greenhouse experiment. Biochars were produced from two sources of biomass: sugarcane bagasse (SB) and wood sawdust (WS), which were pyrolysed at two temperatures (350 °C and 700 °C). After chemical and physical characterization, the biochar samples were granulated with triple superphosphate (TSP) in a 3:1 ratio (TSP: biochar). The agronomic evaluation of the fertilizers was carried out by two successive maize crops (Zea mays L.) in the greenhouse, using a factorial scheme of (5x3) in randomized block design with four replicates. The treatments consisted of five fertilizers (TSP-WS350, TSP-WS700, TSP-SB350, TSP-SB700, and TSP) and three P doses (100, 200, and 400 mg dm-3). It was evaluated the dry matter production, P uptake in maize and P available in the soil after cultivation. The results indicate that dry matter production, considering the P uptake by the plant and the P available in the soil when using a dose of 400 mg dm-3, presented higher results in both crop cycles and the recovery rate in both cultivations occurred inversely to the P doses. The simple association of biochar with soluble phosphate fertilizer did not increase the efficiency of P use by maize, but it increased available P in soil.


Sign in / Sign up

Export Citation Format

Share Document