Phosphorus concentration in barley (Hordeum vulgare L.) seed: Influence on seedling growth and dry matter production

1990 ◽  
Vol 122 (1) ◽  
pp. 79-83 ◽  
Author(s):  
M. Zhang ◽  
M. Nyborg ◽  
W. B. McGill

1976 ◽  
Vol 13 (3) ◽  
pp. 877 ◽  
Author(s):  
S. Fukai ◽  
S. Koh ◽  
A. Kumura


1973 ◽  
Vol 24 (3) ◽  
pp. 341 ◽  
Author(s):  
CS Andrew ◽  
PJVanden Berg

The effects of aluminium (0, 0.5, 1.0, and 2.0 p.p.m.) on dry matter production and subsequent short-term uptake and translocation of phosphorus in whole plants, and on the uptake of phosphorus by excised roots, of six tropical pasture legumes were ascertained. Macroptilium lathyroides, Desrnodiurn uncinaturn, Lotononis bainesii, and Stylosanthes hurnilis were tolerant species in terms of effects on dry matter production. Glycine wightii was a sensitive species and Medicago sativa a very sensitive one. In the whole plant study, plants were grown in Solution culture with a phosphorus concentration of 2 p.p.m., under the above aluminium treatments. Aluminium increased the subsequent uptake of phosphorus (tops+roots) in all species (phosphorus substrate concentration 1 x 10-5M labelled with 32P, 1 and 3 hr uptake periods). Phosphorus uptake in the tops of the four tolerant species was increased by aluminium treatment, and in the two sensitive species it uas reduced. In both the absence and presence of applied aluminium, L. bainesii was the most efficient species per unit weight of root tissue in sorbing total phosphorus, and in addition had the highest efficiency of translocation of phosphorus from roots to tops. S. humilis was also an efficient species. In the excised root study, addition of aluminium to the solution enhanced the sorption of phosphorus by all species. The enhancement was greater in a relatively strong phosphorus solution (2 x 10-4 M) than in a dilute solution (1 x 10-4). The sorption of phosphorus by excised roots of S. humilis from dilute and relatively strong phosphorus substrates was greater than that of other species, both in the absence and presence of added aluminium. L. bainesii was omitted from the excised root experiments.





1996 ◽  
Vol 5 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Jouko Kleemola ◽  
Tuomo Karvonen

According to current scenarios, atmospheric CO2 -concentration ([CO2]) and average air temperature will rise in the future. The predicted longer growing season in Finland would imply that more productive cultivars and even new crop species could be grown. Moreover, higher [CO2] is also likely to increase dry matter production of crops. This study analyzed the growth of spring barley (Hordeum vulgare L.) under ambient and suggested future conditions, and its response to N fertilization. Model simulations of soil temperature and of snow accumulation and melting were also studied. The calibration and validation results showed that the model performed well in simulating snow dynamics, soil temperature, the growth of barley, and the response of crop growth to N fertilization under present conditions. According to the simulation runs, if a cultivar was adapted to the length of the growing period, the increase in dry matter production was 23% in a low estimate scenario of climate change, and 56% in a high estimate scenario under a high level of nitrogen fertilization. The simulation study showed that the shoot dry weight increased by 43%, on average, under high N fertilization (150-200 kg N/ha), but by less (20%) under a low level of N (25-50 kg N/ha) when the conditions under a central scenario for the year 2050 were compared with the present ones.



1987 ◽  
Vol 67 (4) ◽  
pp. 857-865 ◽  
Author(s):  
C. A. GRANT ◽  
G. J. RACZ

Dry matter production by barley grown in nutrient solution culture was reduced by concentrations of Ca or Mg greater than 8 mmol L−1. Johnston barley was somewhat more sensitive to high levels of Ca and Mg than Bonanza. High concentrations of Ca or Mg did not inhibit uptake of K by the plant. Therefore, the reduction in barley growth was directly caused by excessive levels of Ca and Mg, and not due to a K deficiency induced by excess Ca or Mg. Key words: Calcium, magnesium, potassium, nutrient solution, barley, Hordeum vulgare



1998 ◽  
Vol 78 (4) ◽  
pp. 611-614 ◽  
Author(s):  
Mingchu Zhang ◽  
M. Nyborg ◽  
E. D. Solberg

Seed-placed KCl often adversely affects seed germination and seedling growth because of the high salt index of the material. By coating KCl granules the adverse effect of the KCl can be reduced. Two greenhouse experiments with canola, barley and wheat, and one experiment in the field with barley were conducted to determine if normally adverse levels of seed-placed KCl fertilizer could be reduced when polymer-coated KCl is used. The results show that the number of germinated seeds and seedling dry matter were higher with the seed-placed coated KCl than the seed-placed regular non-coated KCl. Key words: KCl fertilizer, polymer-coated KCl, germination, seedling dry matter



Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 293 ◽  
Author(s):  
Karin Weggler-Beaton ◽  
Robin D. Graham ◽  
Michael J. McLaughlin

In field studies in 1992 and 1993, biosolid applications of 2 t/ha with supplements of mineral N and P were compared with a standard mineral fertiliser application (20 kg N/ha, 20 kg P/ha, 1.8–2.8 kg Zn/ha, 1.4–1.9 kg Cu/ha, 0.5–4 kg Mn/ha) on 4 soil types. Biosolid rates from 2 to 10 t/ha were applied in 1993. Shoot dry matter production at different stages of plant development (9 and 15 weeks after sowing) and grain production of Triticum durum and Hordeum vulgare, as well as nutrient concentration in shoots and grain, were taken as indicators for comparing nutrient availability of the 2 sources. A 2-t biosolid application was found to enhance dry-matter production and yield to the same extent as a mineral fertiliser application of 20 kg N/ha, 20 kg P/ha, and 1.8–2.8 kg Zn/ha. In some crop rotations and on sites with a high yield potential, additional nitrogen with 2 t biosolids/ha would be necessary to achieve such yields. However, development of durum wheat fertilised with 2 t biosolids was slower and P uptake lower than with mineral fertiliser until late booting. Durum wheat fertilised with 4 t biosolids showed similar P-uptake values as plants fertilised with the mineral fertiliser. The Zn-uptake of plants was positively correlated with biosolid application rates, showing a linear relationship. A 2-t biosolid application alleviated micronutrient deficiency to the same extent as the same rate of Zn (and Cu) given in mineral form.



1986 ◽  
Vol 26 (4) ◽  
pp. 445
Author(s):  
DK Muldoon

The elements nitrogen, phosphorus, potassium, sulfur and zinc were sequentially omitted from a 'complete' fertiliser applied to plots on an alkaline soil, and lucerne (Medicago sativa) was sown immediately afterwards. The dry matter production of lucerne was measured in repeated cuts over 2 years; its mineral composition was determined periodically. In a second experiment 4 rates of phosphorus were applied to a l -year-old stand of lucerne and dry matter production recorded for 1 year. Lucerne yields in the first year were reduced from 17-1 8 t/ha to less than 14 t/ha by omitting phosphorus. Yields universally decreased in the second year as the 50 kg/ha P applied at sowing was depleted through the removal of 40 kg/ha P in forage. Following this depletion a linear yield response up to 80 kg/ha P was found (experiment 2). Omitting phosphorus fertiliser reduced the plant phosphorus concentration from 0.23 to 0.21% when sampled 15 months after sowing. The plant phosphorus concentration decreased with time in all treatments. The available soil phosphorus level decreased from an initial 12 to 6-7 �g/g after 6 months and further to 2 �g/g after 30 months. Fertiliser phosphorus raised the soil phosphorus level but this also was depleted to 2-3 �g/g in 30 months. Omitting zinc reduced the plant zinc concentration. However, neither the omission of nitrogen, potassium, sulfur nor zinc from the fertiliser had any effect on lucerne yields.



Sign in / Sign up

Export Citation Format

Share Document