Effect of oxygen deprivation on soil hydrophobicity during heating

2005 ◽  
Vol 14 (4) ◽  
pp. 449 ◽  
Author(s):  
R. Bryant ◽  
S. H. Doerr ◽  
M. Helbig

Previous studies of the effects of heating on soil hydrophobicity have been conducted under free availability of oxygen. Under fire, however, soils may be deprived of oxygen due to its consumption at the heat source and inadequate replenishment in the soil. In the present study, effects of heating on soil hydrophobicity are examined for three initially hydrophobic Australian eucalypt forest soils under standard and oxygen-deprived atmospheres for temperatures (T) of 250–600°C and durations (tE) 2–180 min. Hydrophobicity assessments using water droplet penetration time (WDPT) tests indicate substantial differences between the absence and presence of oxygen. Heating to 250–300°C enhanced hydrophobicity from initial respective WDPTs of 2029 s, 361 s and 15 s to > 18 000 s for all samples under both atmospheres. Depending on heating duration, hydrophobicity was eliminated (WDPTs ~0 s) in air between 210 and 340°C, but under oxygen-deprived conditions between 400 and 510°C. Relationships between the destruction temperature for hydrophobicity TD and tE provide temperature–duration thresholds below which hydrophobicity persists under oxygen concentrations <21%. As established temperature–duration thresholds for hydrophobicity destruction are based on the free availability of oxygen, caution is advised in their applicability to field situations where heating under burning may occur in oxygen-depleted conditions.

2021 ◽  
Vol 283 ◽  
pp. 122651
Author(s):  
T. Mauffré ◽  
E. Keita ◽  
E. Contraires ◽  
F. McGregor ◽  
A. Fabbri

2015 ◽  
pp. 221-231
Author(s):  
David J. Schmidt ◽  
Denise Koth ◽  
Denise Jubenville ◽  
Robert F. Highsmith

2007 ◽  
Vol 11 (2) ◽  
pp. 23-36 ◽  
Author(s):  
Javad Esfahani ◽  
Ali Abdolabadi

A transient one dimensional model has been presented to simulate degradation and gasification of polyethylene, in early stage of fire growth. In the present model effect of oxygen on degradation and rate of polymer gasification while the sample is subjected to an external radiative heat source is numerically investigated. This model includes different mechanism, which affect the degradation process, such as in depth thermal oxidative decomposition, in depth absorption of radiation, heat transfer, volatiles advection in solid phase and convective heat transfer on surface. Also effects of radiative parameters, due to formation of char layer such as surface reflectivity and absorptivity on thermal degradation of polyethylene are investigated. The results for 40 kW/m2 heat source are reported and yielded realistic results, comparing to the published experimental data. The results show that an increase in oxygen concentration leads to considerable increase in gasification rate and also leads to sharp increase of surface temperature. .


2019 ◽  
Vol 894 ◽  
pp. 104-111
Author(s):  
Thanh Long Le ◽  
Jyh Chen Chen ◽  
Huy Bich Nguyen

In this study, the numerical computation is used to investigate the transient movement of a water droplet in a microchannel. For tracking the evolution of the free interface between two immiscible fluids, we employed the finite element method with the two-phase level set technique to solve the Navier-Stokes equations coupled with the energy equation. Both the upper wall and the bottom wall of the microchannel are set to be an ambient temperature. 40mW heat source is placed at the distance of 1 mm from the initial position of a water droplet. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet and the thermocapillary on the receding side is smaller than that on the advancing side. The temperature gradient inside the droplet increases quickly at the initial times and then decreases versus time. Therefore, the actuation velocity of the water droplet first increases significantly, and then decreases continuously. The dynamic contact angle is strongly affected by the oil flow motion and the net thermocapillary momentum inside the droplet. The advancing contact angle is always larger than the receding contact angle during actuation process.


Soil Research ◽  
1997 ◽  
Vol 35 (6) ◽  
pp. 1231 ◽  
Author(s):  
M. D. Laffan ◽  
T. J. Kingston

Soil properties and earthworm population density were examined for 5 forest soils derived from Silurian-Devonian sandstones (Mathinna Beds) in north-eastern Tasmania. The soils occur along gradients of altitude, rainfall, and forest type; they include 2 with texture-contrast and 3 with gradational soil profile types. The density and biomass of the most abundant earthworm species Megascolex montisarthuri, and of all earthworm species combined, were found to be greater in gradational than in texture-contrast soils. A greater proportion of the earthworms in gradational soils than in texture-contrast soils was found to occur at soil depths exceeding 10 cm. The contrast was most pronounced between the 2 texture-contrast soils and the single gradational soil that occur under dry eucalypt forest. This paper explores the hypothesis that bioturbation of surface and subsurface layers by earthworms is an important mixing process that in gradational soils outweighs the counter tendency for soil particles to sort and thus form texture-contrast profiles.


Author(s):  
Long Thanh Le

In this study, the numerical computation is used to investigate the transient thermocapillary migration of a water droplet in a Microchannel. For tracking the evolution of the free interface between two immiscible fluids, we employed the finite element method with the two-phase level set technique to solve the Navier-Stokes equations coupled with the energy equation. Both the upper wall and the bottom wall of the microchannel are set to be an ambient temperature. The heat source is placed at the left side of a water droplet. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet and the thermocapillary on the receding side is smaller than that on the advancing side. The temperature gradient inside the droplet increases quickly at the initial times and then decreases versus time. Therefore, the actuation velocity of the water droplet first increases significantly, and then decreases continuously. The dynamic contact angle is strongly affected by the oil flow motion and the net thermocapillary momentum inside the droplet. The advancing contact angle is always larger than the receding contact angle during actuation process.


2011 ◽  
Vol 131 (8) ◽  
pp. 648-658 ◽  
Author(s):  
Taisuke Nose ◽  
Yuzo Yokoyama ◽  
Akira Nakamura ◽  
Yasushi Minamitani

2015 ◽  
Vol 45 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Eduardo Saldanha Vogelmann ◽  
José Miguel Reichert ◽  
Juliana Prevedello ◽  
Gabriel Oladele Awe ◽  
Dalvan José Reinert

Hydrophobic or water repellent soils slowly absorb water because of the low wett ability of the soil particles which are coated with hydrophobic organic substances. These pose significant effects on plant growth, water infiltration and retention, surface runoff and erosion. The objective of this study was to compare the performance of tension micro-infiltrometer(TMI) and the water drop penetration time (WDPT) methods in the determination of the hydrophobicity index of eighteen soils from southern Brazil. Soil samples were collected from the 0-5cm soil layer to determine particle size distribution, organic matter content, hydrophobicity index of soil aggregates and droplet penetration time of disaggregated and sieved soil samples. For the TMI method the soil samples were subjected to minor changes due to the use of macroaggregates to preserve the distribution of solid constituents in the soil. Due to the homogeneity of the soil samples the WDPT method gave smaller coefficients of variation unlike the TMI method where the soil structure is preserved. However, both methods had low coefficients of variation, and are thus effective for determining the soil hydrophobicity, especially when the log hydrophobicity index or log WDPT is >1.


2009 ◽  
Vol 58 (3) ◽  
pp. 434-439 ◽  
Author(s):  
MICHEL MILLODOT ◽  
DANIEL J. O'LEARY

Sign in / Sign up

Export Citation Format

Share Document